G. Glentis, Y. Kopsinis, K. Georgoulakis, C. Matrakidis
{"title":"利用稀疏感应伏特均衡器的光纤链路电子色散补偿","authors":"G. Glentis, Y. Kopsinis, K. Georgoulakis, C. Matrakidis","doi":"10.1109/ISSPIT.2013.6781889","DOIUrl":null,"url":null,"abstract":"During the last few years, a lot of research has been invested for the development of electronic devices equipped with advanced signal processing techniques for the dispersion compensation of Optical transmission systems. Compared to their all-optical counterparts, electronic compensation increases flexibility and gives a new impetus to transparent optical networks for adaptive and dynamic handling in cases where the total accumulated dispersion is not known in advance. In this paper, the Sparse Learning via Iterative Minimization (SLIM) algorithm is employed for the design of reduced size Volterra Decision Feedback (VDFE) equalizers in the context of optical communications is considered. The equalizer structure is dynamically tuned discarding coefficients that have a marginal contribution to the performance of the equalizer leading to both enhanced convergence speed and significant computational complexity savings.","PeriodicalId":88960,"journal":{"name":"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology","volume":"6 1","pages":"000255-000260"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Electronic dispersion compensation of fiber links using sparsity induced volterra equalizers\",\"authors\":\"G. Glentis, Y. Kopsinis, K. Georgoulakis, C. Matrakidis\",\"doi\":\"10.1109/ISSPIT.2013.6781889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the last few years, a lot of research has been invested for the development of electronic devices equipped with advanced signal processing techniques for the dispersion compensation of Optical transmission systems. Compared to their all-optical counterparts, electronic compensation increases flexibility and gives a new impetus to transparent optical networks for adaptive and dynamic handling in cases where the total accumulated dispersion is not known in advance. In this paper, the Sparse Learning via Iterative Minimization (SLIM) algorithm is employed for the design of reduced size Volterra Decision Feedback (VDFE) equalizers in the context of optical communications is considered. The equalizer structure is dynamically tuned discarding coefficients that have a marginal contribution to the performance of the equalizer leading to both enhanced convergence speed and significant computational complexity savings.\",\"PeriodicalId\":88960,\"journal\":{\"name\":\"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology\",\"volume\":\"6 1\",\"pages\":\"000255-000260\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2013.6781889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2013.6781889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electronic dispersion compensation of fiber links using sparsity induced volterra equalizers
During the last few years, a lot of research has been invested for the development of electronic devices equipped with advanced signal processing techniques for the dispersion compensation of Optical transmission systems. Compared to their all-optical counterparts, electronic compensation increases flexibility and gives a new impetus to transparent optical networks for adaptive and dynamic handling in cases where the total accumulated dispersion is not known in advance. In this paper, the Sparse Learning via Iterative Minimization (SLIM) algorithm is employed for the design of reduced size Volterra Decision Feedback (VDFE) equalizers in the context of optical communications is considered. The equalizer structure is dynamically tuned discarding coefficients that have a marginal contribution to the performance of the equalizer leading to both enhanced convergence speed and significant computational complexity savings.