{"title":"具有独立增量的非交换随机过程","authors":"M. Schurmann","doi":"10.1142/s0219025722400094","DOIUrl":null,"url":null,"abstract":"This article is on the research of Wilhelm von Waldenfels in the mathematical field of quantum (or non-commutative) probability theory. Wilhelm von Waldenfels cer-tainly was one of the pioneers of this field. His idea was to work with moments and to replace polynomials in commuting variables by free algebras which play the role of algebras of polynomials in non-commuting quantities. Before he contributed to quantum probability he already worked with free algebras and free Lie algebras. One can imagine that this helped to create his own special algebraic method which proved to be so very fruitful. He came from physics. His PhD thesis, supervised by Heinz K¨onig, was in probability theory, in the more modern and more algebraic branch of probability theory on groups. Maybe the three, physics, abstract algebra and probability, must have been the best prerequisites to become a pioneer, even one of the founders, of quantum probability. We concentrate on a small part of the scientific work of Wilhelm von Waldenfels. The aspects of physics are practically not mentioned at all. There is nothing on his results in classical probability on groups (Waldenfels operators). This is an attempt to show how the concepts of non-commutative notions of independence and of L´evy processes on structures like Hopf algebras developed from the ideas of Wilhelm von Waldenfels.","PeriodicalId":50366,"journal":{"name":"Infinite Dimensional Analysis Quantum Probability and Related Topics","volume":"11 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-commutative stochastic processes with independent increments\",\"authors\":\"M. Schurmann\",\"doi\":\"10.1142/s0219025722400094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is on the research of Wilhelm von Waldenfels in the mathematical field of quantum (or non-commutative) probability theory. Wilhelm von Waldenfels cer-tainly was one of the pioneers of this field. His idea was to work with moments and to replace polynomials in commuting variables by free algebras which play the role of algebras of polynomials in non-commuting quantities. Before he contributed to quantum probability he already worked with free algebras and free Lie algebras. One can imagine that this helped to create his own special algebraic method which proved to be so very fruitful. He came from physics. His PhD thesis, supervised by Heinz K¨onig, was in probability theory, in the more modern and more algebraic branch of probability theory on groups. Maybe the three, physics, abstract algebra and probability, must have been the best prerequisites to become a pioneer, even one of the founders, of quantum probability. We concentrate on a small part of the scientific work of Wilhelm von Waldenfels. The aspects of physics are practically not mentioned at all. There is nothing on his results in classical probability on groups (Waldenfels operators). This is an attempt to show how the concepts of non-commutative notions of independence and of L´evy processes on structures like Hopf algebras developed from the ideas of Wilhelm von Waldenfels.\",\"PeriodicalId\":50366,\"journal\":{\"name\":\"Infinite Dimensional Analysis Quantum Probability and Related Topics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infinite Dimensional Analysis Quantum Probability and Related Topics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219025722400094\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infinite Dimensional Analysis Quantum Probability and Related Topics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025722400094","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Non-commutative stochastic processes with independent increments
This article is on the research of Wilhelm von Waldenfels in the mathematical field of quantum (or non-commutative) probability theory. Wilhelm von Waldenfels cer-tainly was one of the pioneers of this field. His idea was to work with moments and to replace polynomials in commuting variables by free algebras which play the role of algebras of polynomials in non-commuting quantities. Before he contributed to quantum probability he already worked with free algebras and free Lie algebras. One can imagine that this helped to create his own special algebraic method which proved to be so very fruitful. He came from physics. His PhD thesis, supervised by Heinz K¨onig, was in probability theory, in the more modern and more algebraic branch of probability theory on groups. Maybe the three, physics, abstract algebra and probability, must have been the best prerequisites to become a pioneer, even one of the founders, of quantum probability. We concentrate on a small part of the scientific work of Wilhelm von Waldenfels. The aspects of physics are practically not mentioned at all. There is nothing on his results in classical probability on groups (Waldenfels operators). This is an attempt to show how the concepts of non-commutative notions of independence and of L´evy processes on structures like Hopf algebras developed from the ideas of Wilhelm von Waldenfels.
期刊介绍:
In the past few years the fields of infinite dimensional analysis and quantum probability have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. The number of first-class papers in these fields has grown at the same rate. This is currently the only journal which is devoted to these fields.
It constitutes an essential and central point of reference for the large number of mathematicians, mathematical physicists and other scientists who have been drawn into these areas. Both fields have strong interdisciplinary nature, with deep connection to, for example, classical probability, stochastic analysis, mathematical physics, operator algebras, irreversibility, ergodic theory and dynamical systems, quantum groups, classical and quantum stochastic geometry, quantum chaos, Dirichlet forms, harmonic analysis, quantum measurement, quantum computer, etc. The journal reflects this interdisciplinarity and welcomes high quality papers in all such related fields, particularly those which reveal connections with the main fields of this journal.