W. Pond, S. L. Boleman, M. Fiorotto, H. Ho, D. Knabe, H. Mersmann, J. W. Savell, D. Su
{"title":"家猪脑发育的围生期个体发育。","authors":"W. Pond, S. L. Boleman, M. Fiorotto, H. Ho, D. Knabe, H. Mersmann, J. W. Savell, D. Su","doi":"10.1111/j.1525-1373.2000.22314.x","DOIUrl":null,"url":null,"abstract":"The perinatal development of the brain is highlighted by a growth spurt whose timing varies among species. The growth of the porcine cerebrum was investigated from the third trimester of gestation (70 days postconception) through the first 3.5 weeks of postnatal life (140 days postconception). The shape of the growth curves for cerebrum weight, total protein mass, total cell number (estimated by DNA content), and myelination (estimated by cholesterol accretion) were described. The growth velocity of cerebrum weight had two peaks, one at 90 days and the other at 130 days postconception, whereas that of total protein was greatest from 90 to 130 days postconception, and that of total DNA was greatest between 90 and 110 days and again at 130 days postconception. The growth velocity for total cholesterol continued to increase during the entire period, suggesting that myelination continued after the growth spurts for cells (protein and DNA). The growth velocity patterns observed in these contemporary pigs suggest that this species may be an appropriate model for human brain development, not only in the perinatal pattern of increase in mass of the cerebrum, as established previously, but also with regard to the patterns of cellular development and myelination.","PeriodicalId":20618,"journal":{"name":"Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine","volume":"26 1","pages":"102-8"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":"{\"title\":\"Perinatal ontogeny of brain growth in the domestic pig.\",\"authors\":\"W. Pond, S. L. Boleman, M. Fiorotto, H. Ho, D. Knabe, H. Mersmann, J. W. Savell, D. Su\",\"doi\":\"10.1111/j.1525-1373.2000.22314.x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The perinatal development of the brain is highlighted by a growth spurt whose timing varies among species. The growth of the porcine cerebrum was investigated from the third trimester of gestation (70 days postconception) through the first 3.5 weeks of postnatal life (140 days postconception). The shape of the growth curves for cerebrum weight, total protein mass, total cell number (estimated by DNA content), and myelination (estimated by cholesterol accretion) were described. The growth velocity of cerebrum weight had two peaks, one at 90 days and the other at 130 days postconception, whereas that of total protein was greatest from 90 to 130 days postconception, and that of total DNA was greatest between 90 and 110 days and again at 130 days postconception. The growth velocity for total cholesterol continued to increase during the entire period, suggesting that myelination continued after the growth spurts for cells (protein and DNA). The growth velocity patterns observed in these contemporary pigs suggest that this species may be an appropriate model for human brain development, not only in the perinatal pattern of increase in mass of the cerebrum, as established previously, but also with regard to the patterns of cellular development and myelination.\",\"PeriodicalId\":20618,\"journal\":{\"name\":\"Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine\",\"volume\":\"26 1\",\"pages\":\"102-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/j.1525-1373.2000.22314.x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/j.1525-1373.2000.22314.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Perinatal ontogeny of brain growth in the domestic pig.
The perinatal development of the brain is highlighted by a growth spurt whose timing varies among species. The growth of the porcine cerebrum was investigated from the third trimester of gestation (70 days postconception) through the first 3.5 weeks of postnatal life (140 days postconception). The shape of the growth curves for cerebrum weight, total protein mass, total cell number (estimated by DNA content), and myelination (estimated by cholesterol accretion) were described. The growth velocity of cerebrum weight had two peaks, one at 90 days and the other at 130 days postconception, whereas that of total protein was greatest from 90 to 130 days postconception, and that of total DNA was greatest between 90 and 110 days and again at 130 days postconception. The growth velocity for total cholesterol continued to increase during the entire period, suggesting that myelination continued after the growth spurts for cells (protein and DNA). The growth velocity patterns observed in these contemporary pigs suggest that this species may be an appropriate model for human brain development, not only in the perinatal pattern of increase in mass of the cerebrum, as established previously, but also with regard to the patterns of cellular development and myelination.