基于RBF神经网络的四旋翼无人机模型参考自适应控制

Mengqian Liu, Xiwang Dong, Qingdong Li, Z. Ren
{"title":"基于RBF神经网络的四旋翼无人机模型参考自适应控制","authors":"Mengqian Liu, Xiwang Dong, Qingdong Li, Z. Ren","doi":"10.1109/GNCC42960.2018.9019021","DOIUrl":null,"url":null,"abstract":"In this paper, a model reference control method based on RBF neural networks is applied to attitude control of quadrotor. The model of a quadrotor is constructed and simplified to obtain the reference model in the same order as the plant. The RBF is trained by using the gradient descent method. Through simulation experiments, MRAC based on RBF has presented good tracking performance on the nonlinear quadrotor system with unknown and changing parameters.","PeriodicalId":6623,"journal":{"name":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","volume":"39 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Reference Adaptive Control of a Quadrotor UAV based on RBF Neural Networks\",\"authors\":\"Mengqian Liu, Xiwang Dong, Qingdong Li, Z. Ren\",\"doi\":\"10.1109/GNCC42960.2018.9019021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a model reference control method based on RBF neural networks is applied to attitude control of quadrotor. The model of a quadrotor is constructed and simplified to obtain the reference model in the same order as the plant. The RBF is trained by using the gradient descent method. Through simulation experiments, MRAC based on RBF has presented good tracking performance on the nonlinear quadrotor system with unknown and changing parameters.\",\"PeriodicalId\":6623,\"journal\":{\"name\":\"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)\",\"volume\":\"39 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GNCC42960.2018.9019021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GNCC42960.2018.9019021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将基于RBF神经网络的模型参考控制方法应用于四旋翼飞行器的姿态控制。对四旋翼飞行器的模型进行了构造和简化,得到了与系统同阶的参考模型。采用梯度下降法对RBF进行训练。仿真实验表明,基于RBF的MRAC对参数未知和变化的非线性四旋翼系统具有良好的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Reference Adaptive Control of a Quadrotor UAV based on RBF Neural Networks
In this paper, a model reference control method based on RBF neural networks is applied to attitude control of quadrotor. The model of a quadrotor is constructed and simplified to obtain the reference model in the same order as the plant. The RBF is trained by using the gradient descent method. Through simulation experiments, MRAC based on RBF has presented good tracking performance on the nonlinear quadrotor system with unknown and changing parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信