{"title":"顶点代数的共形块及其在a_g,n上的连接","authors":"Chiara Damiolini, A. Gibney, Nicola Tarasca","doi":"10.2140/gt.2021.25.2235","DOIUrl":null,"url":null,"abstract":"We show that coinvariants of modules over conformal vertex algebras give rise to quasi-coherent sheaves on moduli of stable pointed curves. These generalize Verlinde bundles or vector bundles of conformal blocks defined using affine Lie algebras studied first by Tsuchiya-Kanie, Tsuchiya-Ueno-Yamada, and extend work of a number of researchers. The sheaves carry a twisted logarithmic D-module structure, and hence support a projectively flat connection. We identify the logarithmic Atiyah algebra acting on them, generalizing work of Tsuchimoto for affine Lie algebras.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"93 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2019-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Conformal blocks from vertex algebras and their\\nconnections on ℳg,n\",\"authors\":\"Chiara Damiolini, A. Gibney, Nicola Tarasca\",\"doi\":\"10.2140/gt.2021.25.2235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that coinvariants of modules over conformal vertex algebras give rise to quasi-coherent sheaves on moduli of stable pointed curves. These generalize Verlinde bundles or vector bundles of conformal blocks defined using affine Lie algebras studied first by Tsuchiya-Kanie, Tsuchiya-Ueno-Yamada, and extend work of a number of researchers. The sheaves carry a twisted logarithmic D-module structure, and hence support a projectively flat connection. We identify the logarithmic Atiyah algebra acting on them, generalizing work of Tsuchimoto for affine Lie algebras.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2021.25.2235\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2021.25.2235","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conformal blocks from vertex algebras and their
connections on ℳg,n
We show that coinvariants of modules over conformal vertex algebras give rise to quasi-coherent sheaves on moduli of stable pointed curves. These generalize Verlinde bundles or vector bundles of conformal blocks defined using affine Lie algebras studied first by Tsuchiya-Kanie, Tsuchiya-Ueno-Yamada, and extend work of a number of researchers. The sheaves carry a twisted logarithmic D-module structure, and hence support a projectively flat connection. We identify the logarithmic Atiyah algebra acting on them, generalizing work of Tsuchimoto for affine Lie algebras.
期刊介绍:
Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers.
The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.