顶点代数的共形块及其在a_g,n上的连接

IF 2 1区 数学
Chiara Damiolini, A. Gibney, Nicola Tarasca
{"title":"顶点代数的共形块及其在a_g,n上的连接","authors":"Chiara Damiolini, A. Gibney, Nicola Tarasca","doi":"10.2140/gt.2021.25.2235","DOIUrl":null,"url":null,"abstract":"We show that coinvariants of modules over conformal vertex algebras give rise to quasi-coherent sheaves on moduli of stable pointed curves. These generalize Verlinde bundles or vector bundles of conformal blocks defined using affine Lie algebras studied first by Tsuchiya-Kanie, Tsuchiya-Ueno-Yamada, and extend work of a number of researchers. The sheaves carry a twisted logarithmic D-module structure, and hence support a projectively flat connection. We identify the logarithmic Atiyah algebra acting on them, generalizing work of Tsuchimoto for affine Lie algebras.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"93 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2019-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Conformal blocks from vertex algebras and their\\nconnections on ℳg,n\",\"authors\":\"Chiara Damiolini, A. Gibney, Nicola Tarasca\",\"doi\":\"10.2140/gt.2021.25.2235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that coinvariants of modules over conformal vertex algebras give rise to quasi-coherent sheaves on moduli of stable pointed curves. These generalize Verlinde bundles or vector bundles of conformal blocks defined using affine Lie algebras studied first by Tsuchiya-Kanie, Tsuchiya-Ueno-Yamada, and extend work of a number of researchers. The sheaves carry a twisted logarithmic D-module structure, and hence support a projectively flat connection. We identify the logarithmic Atiyah algebra acting on them, generalizing work of Tsuchimoto for affine Lie algebras.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2021.25.2235\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2021.25.2235","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们证明了共形顶点代数上模的协不变量在稳定点曲线的模上产生拟相干束。这些方法推广了用仿射李代数定义的共形块的Verlinde束或向量束,这些仿射李代数首先由Tsuchiya-Kanie, Tsuchiya-Ueno-Yamada研究,并扩展了许多研究人员的工作。轮轴采用扭转对数d模结构,因此支持投影平面连接。我们确定了作用于它们的对数Atiyah代数,推广了土本关于仿射李代数的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conformal blocks from vertex algebras and their connections on ℳg,n
We show that coinvariants of modules over conformal vertex algebras give rise to quasi-coherent sheaves on moduli of stable pointed curves. These generalize Verlinde bundles or vector bundles of conformal blocks defined using affine Lie algebras studied first by Tsuchiya-Kanie, Tsuchiya-Ueno-Yamada, and extend work of a number of researchers. The sheaves carry a twisted logarithmic D-module structure, and hence support a projectively flat connection. We identify the logarithmic Atiyah algebra acting on them, generalizing work of Tsuchimoto for affine Lie algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信