萎缩的辫子和左侧分布单峰

Linjun Li
{"title":"萎缩的辫子和左侧分布单峰","authors":"Linjun Li","doi":"10.1142/S0218216521500279","DOIUrl":null,"url":null,"abstract":"We consider a natural generalization of braids which we call shrinking braids. We state the relations of shrinking braids and use them to define algebraically the monoid $R$. We endow a subset of $R$ with a \\emph{left distributive monoid} structure and use it to extend the Dehornoy order on $B_{\\infty}$ to an order on $R$. By using this order, we prove that $R$ is isomorphic to the monoid which is generated (geometrically) by shrinking braids.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shrinking braids and left distributive monoid\",\"authors\":\"Linjun Li\",\"doi\":\"10.1142/S0218216521500279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a natural generalization of braids which we call shrinking braids. We state the relations of shrinking braids and use them to define algebraically the monoid $R$. We endow a subset of $R$ with a \\\\emph{left distributive monoid} structure and use it to extend the Dehornoy order on $B_{\\\\infty}$ to an order on $R$. By using this order, we prove that $R$ is isomorphic to the monoid which is generated (geometrically) by shrinking braids.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218216521500279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218216521500279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个自然概括的辫子,我们称之为收缩辫。我们陈述了缩辫的关系,并用它们在代数上定义了单群$R$。我们赋予$R$的一个子集一个\emph{左分布单群}结构,并用它来扩展$B_{\infty}$上的Dehornoy阶到$R$上的阶。利用这一阶,我们证明$R$是同构于(几何上)由缩辫生成的单群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shrinking braids and left distributive monoid
We consider a natural generalization of braids which we call shrinking braids. We state the relations of shrinking braids and use them to define algebraically the monoid $R$. We endow a subset of $R$ with a \emph{left distributive monoid} structure and use it to extend the Dehornoy order on $B_{\infty}$ to an order on $R$. By using this order, we prove that $R$ is isomorphic to the monoid which is generated (geometrically) by shrinking braids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信