辅助手势的交互和控制

Shuai Jin, Yi Li, Guangming Lu, Jian-xun Luo, Weidong Chen, Xiaoxiang Zheng
{"title":"辅助手势的交互和控制","authors":"Shuai Jin, Yi Li, Guangming Lu, Jian-xun Luo, Weidong Chen, Xiaoxiang Zheng","doi":"10.1109/ICIST.2011.5765090","DOIUrl":null,"url":null,"abstract":"This paper presents method used hand gesture recognition in human-computer interaction and control. Nowadays in dataglove-driven motion capture field, researchers preprocess the raw sensor data of the glove with calibration methods for acquiring a high precision in the VR environment. But there are still alternative solutions. Some machine learning algorithms, for example the self-organizing map method, offer a powerful capacity in the case of hand gesture recognition with uncalibrated glove data. We present the reason we introduced the SOM into the recognition process and how it works. Our goal is to construct a stable and robust mechanism to recognize hand gesture and then put it into hand gesture control system as an interaction platform for virtual reality.","PeriodicalId":6408,"journal":{"name":"2009 International Conference on Environmental Science and Information Application Technology","volume":"38 1","pages":"1362-1366"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interaction and control with the auxiliary of hand gesture\",\"authors\":\"Shuai Jin, Yi Li, Guangming Lu, Jian-xun Luo, Weidong Chen, Xiaoxiang Zheng\",\"doi\":\"10.1109/ICIST.2011.5765090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents method used hand gesture recognition in human-computer interaction and control. Nowadays in dataglove-driven motion capture field, researchers preprocess the raw sensor data of the glove with calibration methods for acquiring a high precision in the VR environment. But there are still alternative solutions. Some machine learning algorithms, for example the self-organizing map method, offer a powerful capacity in the case of hand gesture recognition with uncalibrated glove data. We present the reason we introduced the SOM into the recognition process and how it works. Our goal is to construct a stable and robust mechanism to recognize hand gesture and then put it into hand gesture control system as an interaction platform for virtual reality.\",\"PeriodicalId\":6408,\"journal\":{\"name\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"volume\":\"38 1\",\"pages\":\"1362-1366\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST.2011.5765090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Environmental Science and Information Application Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2011.5765090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种将手势识别应用于人机交互与控制的方法。目前在dataglove驱动的动作捕捉领域,研究人员利用标定方法对手套的原始传感器数据进行预处理,以获得在VR环境下的高精度。但仍有其他解决方案。一些机器学习算法,例如自组织地图方法,在使用未校准的手套数据进行手势识别的情况下提供了强大的能力。我们介绍了将SOM引入识别过程的原因以及它是如何工作的。我们的目标是构建一个稳定、鲁棒的手势识别机制,并将其应用于手势控制系统中,作为虚拟现实的交互平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interaction and control with the auxiliary of hand gesture
This paper presents method used hand gesture recognition in human-computer interaction and control. Nowadays in dataglove-driven motion capture field, researchers preprocess the raw sensor data of the glove with calibration methods for acquiring a high precision in the VR environment. But there are still alternative solutions. Some machine learning algorithms, for example the self-organizing map method, offer a powerful capacity in the case of hand gesture recognition with uncalibrated glove data. We present the reason we introduced the SOM into the recognition process and how it works. Our goal is to construct a stable and robust mechanism to recognize hand gesture and then put it into hand gesture control system as an interaction platform for virtual reality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信