并行计算Smarandache函数

骈文研究 Pub Date : 2004-07-05 DOI:10.1109/ISPDC.2004.15
S. Tabirca, T. Tabirca, Kieran Reynolds, L. Yang
{"title":"并行计算Smarandache函数","authors":"S. Tabirca, T. Tabirca, Kieran Reynolds, L. Yang","doi":"10.1109/ISPDC.2004.15","DOIUrl":null,"url":null,"abstract":"This article presents an efficient method to calculate in parallel the values of the Smarandache function S(i), i = 1, 2, ..., n. The value S(i) can be sequentially found with a complexity of i/(log i). The computation has an important constraint, which is to have consecutive values computed by the same processor. This makes the dynamic scheduling methods inapplicable. The proposed solution is based on a balanced workload block scheduling method. Experiments show that the method is efficient and generates a good load balance.","PeriodicalId":62714,"journal":{"name":"骈文研究","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculating Smarandache function in parallel\",\"authors\":\"S. Tabirca, T. Tabirca, Kieran Reynolds, L. Yang\",\"doi\":\"10.1109/ISPDC.2004.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an efficient method to calculate in parallel the values of the Smarandache function S(i), i = 1, 2, ..., n. The value S(i) can be sequentially found with a complexity of i/(log i). The computation has an important constraint, which is to have consecutive values computed by the same processor. This makes the dynamic scheduling methods inapplicable. The proposed solution is based on a balanced workload block scheduling method. Experiments show that the method is efficient and generates a good load balance.\",\"PeriodicalId\":62714,\"journal\":{\"name\":\"骈文研究\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"骈文研究\",\"FirstCategoryId\":\"1092\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPDC.2004.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"骈文研究","FirstCategoryId":"1092","ListUrlMain":"https://doi.org/10.1109/ISPDC.2004.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种并行计算Smarandache函数S(i), i = 1,2,…值的有效方法。值S(i)可以以i/(log i)的复杂度顺序找到。计算有一个重要的约束,即由同一个处理器计算连续的值。这使得动态调度方法不适用。该方案基于负载均衡块调度方法。实验结果表明,该方法是有效的,并产生了良好的负载平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calculating Smarandache function in parallel
This article presents an efficient method to calculate in parallel the values of the Smarandache function S(i), i = 1, 2, ..., n. The value S(i) can be sequentially found with a complexity of i/(log i). The computation has an important constraint, which is to have consecutive values computed by the same processor. This makes the dynamic scheduling methods inapplicable. The proposed solution is based on a balanced workload block scheduling method. Experiments show that the method is efficient and generates a good load balance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
104
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信