K. Matsubara, Tsutomu Nagasawa, Yoshinobu Kaneda, Hidenori Mitani, Hiroshi Sato, Takashi Iwase, Y. Aoki, K. Maekawa, H. Yamakoshi, T. Ito, H. Kondo, T. Kono
{"title":"一款65nm硅薄盒(SOTB)嵌入式2T-MONOS闪存,实现0.22 pJ/bit读取能量,64mhz接入,适用于物联网应用","authors":"K. Matsubara, Tsutomu Nagasawa, Yoshinobu Kaneda, Hidenori Mitani, Hiroshi Sato, Takashi Iwase, Y. Aoki, K. Maekawa, H. Yamakoshi, T. Ito, H. Kondo, T. Kono","doi":"10.23919/VLSIC.2019.8778078","DOIUrl":null,"url":null,"abstract":"To expand IoT application ranges, ultra-low active energy operations are expected to edge devices. Especially, read energy reduction in embedded Flash (eFlash) is strongly required to enable real-time sensing with limited energy generated by energy harvesting (EH). In this work, 1.5MB 2T-MONOS eFlash macro is fabricated with 65nm SOTB technology, using low-energy sense amplifier and data transmission circuit techniques which enhance advantages of SOTB devices. The proposed eFlash achieves 0.22 pJ/bit read energy with 64MHz read access, which is low enough to utilize EH technologies as energy sources.","PeriodicalId":6707,"journal":{"name":"2019 Symposium on VLSI Circuits","volume":"26 1","pages":"C202-C203"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A 65nm Silicon-on-Thin-Box (SOTB) Embedded 2T-MONOS Flash Achieving 0.22 pJ/bit Read Energy with 64 MHz Access for IoT Applications\",\"authors\":\"K. Matsubara, Tsutomu Nagasawa, Yoshinobu Kaneda, Hidenori Mitani, Hiroshi Sato, Takashi Iwase, Y. Aoki, K. Maekawa, H. Yamakoshi, T. Ito, H. Kondo, T. Kono\",\"doi\":\"10.23919/VLSIC.2019.8778078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To expand IoT application ranges, ultra-low active energy operations are expected to edge devices. Especially, read energy reduction in embedded Flash (eFlash) is strongly required to enable real-time sensing with limited energy generated by energy harvesting (EH). In this work, 1.5MB 2T-MONOS eFlash macro is fabricated with 65nm SOTB technology, using low-energy sense amplifier and data transmission circuit techniques which enhance advantages of SOTB devices. The proposed eFlash achieves 0.22 pJ/bit read energy with 64MHz read access, which is low enough to utilize EH technologies as energy sources.\",\"PeriodicalId\":6707,\"journal\":{\"name\":\"2019 Symposium on VLSI Circuits\",\"volume\":\"26 1\",\"pages\":\"C202-C203\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIC.2019.8778078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIC.2019.8778078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 65nm Silicon-on-Thin-Box (SOTB) Embedded 2T-MONOS Flash Achieving 0.22 pJ/bit Read Energy with 64 MHz Access for IoT Applications
To expand IoT application ranges, ultra-low active energy operations are expected to edge devices. Especially, read energy reduction in embedded Flash (eFlash) is strongly required to enable real-time sensing with limited energy generated by energy harvesting (EH). In this work, 1.5MB 2T-MONOS eFlash macro is fabricated with 65nm SOTB technology, using low-energy sense amplifier and data transmission circuit techniques which enhance advantages of SOTB devices. The proposed eFlash achieves 0.22 pJ/bit read energy with 64MHz read access, which is low enough to utilize EH technologies as energy sources.