I. Simakova, Y. Demidova, M. Simonov, P. Niphadkar, V. Bokade, N. Devi, P. Dhepe, D. Murzin
{"title":"介孔碳和微孔沸石负载Ru催化剂选择性乙酰丙酸加氢制备γ-戊内酯","authors":"I. Simakova, Y. Demidova, M. Simonov, P. Niphadkar, V. Bokade, N. Devi, P. Dhepe, D. Murzin","doi":"10.1515/cse-2019-0004","DOIUrl":null,"url":null,"abstract":"Abstract Ru supported on mesoporous carbon Sibunit and microporous zeolites (HZSM-5, SiO2/Al2O3 = 250; H-Beta, SiO2/Al2O3 = 30; H-Y, SiO2/Al2O3 = 5; H-USY, SiO2/Al2O3 = 30) synthesized by the sol-gel method (CSIR-National Chemical Laboratory, Pune India) were prepared by impregnation of the corresponding supports with RuCl3∙nH2O (0.1 M) followed by reduction in H2. Catalyst screening in levulinic acid (LA) (15 mL, 6.9 mmol) hydrogenation into g-valerolactone (GVL) with 1,4-dioxane (165°C, hydrogen pressure ca. 16 bar) as a solvent showed higher activity and selectivity to GVL of Ru/zeolites compared to carbon supported catalysts. Among Ru/zeolites LA conversion increased as follows Ru/HZSM-5 < Ru/H-Y < Ru/H-USY < Ru/H-Beta demonstrating a clear advantage of H-Beta preparation method. Optimization of the support microstructure and acidity opens a reliable way for selective catalytic LA hydrogenation to GVL. The catalysts were analyzed by TEM, XRD, H2-TPR and N2 physisorption to compare their physical chemical properties.","PeriodicalId":9642,"journal":{"name":"Catalysis for Sustainable Energy","volume":"56 1","pages":"38 - 50"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Mesoporous carbon and microporous zeolite supported Ru catalysts for selective levulinic acid hydrogenation into γ-valerolactone\",\"authors\":\"I. Simakova, Y. Demidova, M. Simonov, P. Niphadkar, V. Bokade, N. Devi, P. Dhepe, D. Murzin\",\"doi\":\"10.1515/cse-2019-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Ru supported on mesoporous carbon Sibunit and microporous zeolites (HZSM-5, SiO2/Al2O3 = 250; H-Beta, SiO2/Al2O3 = 30; H-Y, SiO2/Al2O3 = 5; H-USY, SiO2/Al2O3 = 30) synthesized by the sol-gel method (CSIR-National Chemical Laboratory, Pune India) were prepared by impregnation of the corresponding supports with RuCl3∙nH2O (0.1 M) followed by reduction in H2. Catalyst screening in levulinic acid (LA) (15 mL, 6.9 mmol) hydrogenation into g-valerolactone (GVL) with 1,4-dioxane (165°C, hydrogen pressure ca. 16 bar) as a solvent showed higher activity and selectivity to GVL of Ru/zeolites compared to carbon supported catalysts. Among Ru/zeolites LA conversion increased as follows Ru/HZSM-5 < Ru/H-Y < Ru/H-USY < Ru/H-Beta demonstrating a clear advantage of H-Beta preparation method. Optimization of the support microstructure and acidity opens a reliable way for selective catalytic LA hydrogenation to GVL. The catalysts were analyzed by TEM, XRD, H2-TPR and N2 physisorption to compare their physical chemical properties.\",\"PeriodicalId\":9642,\"journal\":{\"name\":\"Catalysis for Sustainable Energy\",\"volume\":\"56 1\",\"pages\":\"38 - 50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis for Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cse-2019-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cse-2019-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mesoporous carbon and microporous zeolite supported Ru catalysts for selective levulinic acid hydrogenation into γ-valerolactone
Abstract Ru supported on mesoporous carbon Sibunit and microporous zeolites (HZSM-5, SiO2/Al2O3 = 250; H-Beta, SiO2/Al2O3 = 30; H-Y, SiO2/Al2O3 = 5; H-USY, SiO2/Al2O3 = 30) synthesized by the sol-gel method (CSIR-National Chemical Laboratory, Pune India) were prepared by impregnation of the corresponding supports with RuCl3∙nH2O (0.1 M) followed by reduction in H2. Catalyst screening in levulinic acid (LA) (15 mL, 6.9 mmol) hydrogenation into g-valerolactone (GVL) with 1,4-dioxane (165°C, hydrogen pressure ca. 16 bar) as a solvent showed higher activity and selectivity to GVL of Ru/zeolites compared to carbon supported catalysts. Among Ru/zeolites LA conversion increased as follows Ru/HZSM-5 < Ru/H-Y < Ru/H-USY < Ru/H-Beta demonstrating a clear advantage of H-Beta preparation method. Optimization of the support microstructure and acidity opens a reliable way for selective catalytic LA hydrogenation to GVL. The catalysts were analyzed by TEM, XRD, H2-TPR and N2 physisorption to compare their physical chemical properties.