学习对复杂问题答案的新奇感排序

Shahar Harel, S. Albo, Eugene Agichtein, Kira Radinsky
{"title":"学习对复杂问题答案的新奇感排序","authors":"Shahar Harel, S. Albo, Eugene Agichtein, Kira Radinsky","doi":"10.1145/3308558.3313457","DOIUrl":null,"url":null,"abstract":"Result ranking diversification has become an important issue for web search, summarization, and question answering. For more complex questions with multiple aspects, such as those in community-based question answering (CQA) sites, a retrieval system should provide a diversified set of relevant results, addressing the different aspects of the query, while minimizing redundancy or repetition. We present a new method, DRN , which learns novelty-related features from unlabeled data with minimal social signals, to emphasize diversity in ranking. Specifically, DRN parameterizes question-answer interactions via an LSTM representation, coupled with an extension of neural tensor network, which in turn is combined with a novelty-driven sampling approach to automatically generate training data. DRN provides a novel and general approach to complex question answering diversification and suggests promising directions for search improvements.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Learning Novelty-Aware Ranking of Answers to Complex Questions\",\"authors\":\"Shahar Harel, S. Albo, Eugene Agichtein, Kira Radinsky\",\"doi\":\"10.1145/3308558.3313457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Result ranking diversification has become an important issue for web search, summarization, and question answering. For more complex questions with multiple aspects, such as those in community-based question answering (CQA) sites, a retrieval system should provide a diversified set of relevant results, addressing the different aspects of the query, while minimizing redundancy or repetition. We present a new method, DRN , which learns novelty-related features from unlabeled data with minimal social signals, to emphasize diversity in ranking. Specifically, DRN parameterizes question-answer interactions via an LSTM representation, coupled with an extension of neural tensor network, which in turn is combined with a novelty-driven sampling approach to automatically generate training data. DRN provides a novel and general approach to complex question answering diversification and suggests promising directions for search improvements.\",\"PeriodicalId\":23013,\"journal\":{\"name\":\"The World Wide Web Conference\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The World Wide Web Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3308558.3313457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

结果排序多样化已经成为网络搜索、摘要和问答的重要问题。对于具有多个方面的更复杂的问题,例如基于社区的问答(CQA)站点中的问题,检索系统应该提供多样化的相关结果集,处理查询的不同方面,同时最大限度地减少冗余或重复。我们提出了一种新的方法,即DRN,它通过最小的社会信号从未标记的数据中学习新颖性相关特征,以强调排名的多样性。具体来说,DRN通过LSTM表示对问答交互进行参数化,再加上神经张量网络的扩展,再结合新奇驱动的采样方法来自动生成训练数据。DRN为复杂问题回答多样化提供了一种新颖而通用的方法,并为搜索改进提出了有希望的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Novelty-Aware Ranking of Answers to Complex Questions
Result ranking diversification has become an important issue for web search, summarization, and question answering. For more complex questions with multiple aspects, such as those in community-based question answering (CQA) sites, a retrieval system should provide a diversified set of relevant results, addressing the different aspects of the query, while minimizing redundancy or repetition. We present a new method, DRN , which learns novelty-related features from unlabeled data with minimal social signals, to emphasize diversity in ranking. Specifically, DRN parameterizes question-answer interactions via an LSTM representation, coupled with an extension of neural tensor network, which in turn is combined with a novelty-driven sampling approach to automatically generate training data. DRN provides a novel and general approach to complex question answering diversification and suggests promising directions for search improvements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信