修正Maxwell's Steklov特征值问题两种有限元方法的收敛性分析

IF 1.9 3区 数学 Q2 Mathematics
Bo Gong
{"title":"修正Maxwell's Steklov特征值问题两种有限元方法的收敛性分析","authors":"Bo Gong","doi":"10.1051/m2an/2022001","DOIUrl":null,"url":null,"abstract":"The modified Maxwell's Steklov eigenvalue problem is a new problem arising from the study of inverse electromagnetic scattering problems. In this paper, we investigate two finite element methods for this problem and perform the convergence analysis. Moreover,  the monotonic convergence of the discrete eigenvalues computed by one of the methods is analyzed.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":"15 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Convergence analysis of two finite element methods for the modified Maxwell's Steklov eigenvalue problem\",\"authors\":\"Bo Gong\",\"doi\":\"10.1051/m2an/2022001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The modified Maxwell's Steklov eigenvalue problem is a new problem arising from the study of inverse electromagnetic scattering problems. In this paper, we investigate two finite element methods for this problem and perform the convergence analysis. Moreover,  the monotonic convergence of the discrete eigenvalues computed by one of the methods is analyzed.\",\"PeriodicalId\":50499,\"journal\":{\"name\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/m2an/2022001\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2022001","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

修正麦克斯韦斯特克洛夫特征值问题是在研究电磁逆散射问题的基础上提出的一个新问题。本文研究了这一问题的两种有限元方法,并进行了收敛性分析。此外,还分析了其中一种方法计算的离散特征值的单调收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence analysis of two finite element methods for the modified Maxwell's Steklov eigenvalue problem
The modified Maxwell's Steklov eigenvalue problem is a new problem arising from the study of inverse electromagnetic scattering problems. In this paper, we investigate two finite element methods for this problem and perform the convergence analysis. Moreover,  the monotonic convergence of the discrete eigenvalues computed by one of the methods is analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem. Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信