{"title":"凸优化中一阶原对偶算法的对角预处理","authors":"T. Pock, A. Chambolle","doi":"10.1109/ICCV.2011.6126441","DOIUrl":null,"url":null,"abstract":"In this paper we study preconditioning techniques for the first-order primal-dual algorithm proposed in [5]. In particular, we propose simple and easy to compute diagonal preconditioners for which convergence of the algorithm is guaranteed without the need to compute any step size parameters. As a by-product, we show that for a certain instance of the preconditioning, the proposed algorithm is equivalent to the old and widely unknown alternating step method for monotropic programming [7]. We show numerical results on general linear programming problems and a few standard computer vision problems. In all examples, the preconditioned algorithm significantly outperforms the algorithm of [5].","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"461","resultStr":"{\"title\":\"Diagonal preconditioning for first order primal-dual algorithms in convex optimization\",\"authors\":\"T. Pock, A. Chambolle\",\"doi\":\"10.1109/ICCV.2011.6126441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study preconditioning techniques for the first-order primal-dual algorithm proposed in [5]. In particular, we propose simple and easy to compute diagonal preconditioners for which convergence of the algorithm is guaranteed without the need to compute any step size parameters. As a by-product, we show that for a certain instance of the preconditioning, the proposed algorithm is equivalent to the old and widely unknown alternating step method for monotropic programming [7]. We show numerical results on general linear programming problems and a few standard computer vision problems. In all examples, the preconditioned algorithm significantly outperforms the algorithm of [5].\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"461\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diagonal preconditioning for first order primal-dual algorithms in convex optimization
In this paper we study preconditioning techniques for the first-order primal-dual algorithm proposed in [5]. In particular, we propose simple and easy to compute diagonal preconditioners for which convergence of the algorithm is guaranteed without the need to compute any step size parameters. As a by-product, we show that for a certain instance of the preconditioning, the proposed algorithm is equivalent to the old and widely unknown alternating step method for monotropic programming [7]. We show numerical results on general linear programming problems and a few standard computer vision problems. In all examples, the preconditioned algorithm significantly outperforms the algorithm of [5].