时间序列广义线性回归模型的集中信息准则

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
S. C. Pandhare, T. V. Ramanathan
{"title":"时间序列广义线性回归模型的集中信息准则","authors":"S. C. Pandhare,&nbsp;T. V. Ramanathan","doi":"10.1111/anzs.12310","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The present paper proposes the focussed information criterion (FIC) to tackle the model selection problems pertinent to generalised linear models (GLM) for time series. As a first step towards constructing the FIC, we formally discuss the local asymptotic theory of quasi-maximum likelihood estimation for time series GLM under potential model misspecification. The general FIC formula is derived subsequently that is useful for the simultaneous selection of the order of the autoregressive response as well as a subset of important covariates. We also develop the average FIC (AFIC) that is instrumental in selecting an overall good model for a range of covariates and time regions and establish the equivalence of the AFIC with the classical Akaike's information criterion (AIC). We demonstrate our theory with the analysis of rainfall patterns in Melbourne by means of the logistic and Gamma regression models.</p>\n </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/anzs.12310","citationCount":"1","resultStr":"{\"title\":\"The focussed information criterion for generalised linear regression models for time series\",\"authors\":\"S. C. Pandhare,&nbsp;T. V. Ramanathan\",\"doi\":\"10.1111/anzs.12310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The present paper proposes the focussed information criterion (FIC) to tackle the model selection problems pertinent to generalised linear models (GLM) for time series. As a first step towards constructing the FIC, we formally discuss the local asymptotic theory of quasi-maximum likelihood estimation for time series GLM under potential model misspecification. The general FIC formula is derived subsequently that is useful for the simultaneous selection of the order of the autoregressive response as well as a subset of important covariates. We also develop the average FIC (AFIC) that is instrumental in selecting an overall good model for a range of covariates and time regions and establish the equivalence of the AFIC with the classical Akaike's information criterion (AIC). We demonstrate our theory with the analysis of rainfall patterns in Melbourne by means of the logistic and Gamma regression models.</p>\\n </div>\",\"PeriodicalId\":55428,\"journal\":{\"name\":\"Australian & New Zealand Journal of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/anzs.12310\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian & New Zealand Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12310\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12310","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

针对时间序列广义线性模型的模型选择问题,提出了集中信息准则(FIC)。作为构建FIC的第一步,我们正式讨论了潜在模型错规范下时间序列GLM拟极大似然估计的局部渐近理论。随后推导出一般FIC公式,该公式可用于同时选择自回归响应的阶数以及重要协变量的子集。我们还开发了平均FIC (AFIC),它有助于在一系列协变量和时区中选择一个整体良好的模型,并建立了AFIC与经典赤池信息准则(AIC)的等价性。我们用逻辑回归模型和伽玛回归模型对墨尔本的降雨模式进行了分析,证明了我们的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The focussed information criterion for generalised linear regression models for time series

The present paper proposes the focussed information criterion (FIC) to tackle the model selection problems pertinent to generalised linear models (GLM) for time series. As a first step towards constructing the FIC, we formally discuss the local asymptotic theory of quasi-maximum likelihood estimation for time series GLM under potential model misspecification. The general FIC formula is derived subsequently that is useful for the simultaneous selection of the order of the autoregressive response as well as a subset of important covariates. We also develop the average FIC (AFIC) that is instrumental in selecting an overall good model for a range of covariates and time regions and establish the equivalence of the AFIC with the classical Akaike's information criterion (AIC). We demonstrate our theory with the analysis of rainfall patterns in Melbourne by means of the logistic and Gamma regression models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Australian & New Zealand Journal of Statistics
Australian & New Zealand Journal of Statistics 数学-统计学与概率论
CiteScore
1.30
自引率
9.10%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association. The main body of the journal is divided into three sections. The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data. The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context. The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信