循环荷载下弹性粘塑性结构的最优控制方法

Michaël Peigney, Claude Stolz
{"title":"循环荷载下弹性粘塑性结构的最优控制方法","authors":"Michaël Peigney,&nbsp;Claude Stolz","doi":"10.1016/S1620-7742(01)01381-2","DOIUrl":null,"url":null,"abstract":"<div><p>The optimal control theory is used to study the asymptotic behavior of elastoviscoplastic structures under cyclic loading. With this approach the asymptotic state is solution of a minimization problem. For practical applications an approximate problem is introduced consistently with a spatial discretization. In this framework, the only stationary points of the functional to minimize are the global minima.</p></div>","PeriodicalId":100302,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","volume":"329 9","pages":"Pages 643-648"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01381-2","citationCount":"17","resultStr":"{\"title\":\"Approche par contrôle optimal des structures élastoviscoplastiques sous chargement cyclique\",\"authors\":\"Michaël Peigney,&nbsp;Claude Stolz\",\"doi\":\"10.1016/S1620-7742(01)01381-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The optimal control theory is used to study the asymptotic behavior of elastoviscoplastic structures under cyclic loading. With this approach the asymptotic state is solution of a minimization problem. For practical applications an approximate problem is introduced consistently with a spatial discretization. In this framework, the only stationary points of the functional to minimize are the global minima.</p></div>\",\"PeriodicalId\":100302,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"volume\":\"329 9\",\"pages\":\"Pages 643-648\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01381-2\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1620774201013812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1620774201013812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

应用最优控制理论研究了弹粘塑性结构在循环荷载作用下的渐近行为。该方法的渐近状态是最小化问题的解。在实际应用中,引入近似问题与空间离散化一致。在这个框架中,要最小化的泛函的唯一平稳点是全局最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approche par contrôle optimal des structures élastoviscoplastiques sous chargement cyclique

The optimal control theory is used to study the asymptotic behavior of elastoviscoplastic structures under cyclic loading. With this approach the asymptotic state is solution of a minimization problem. For practical applications an approximate problem is introduced consistently with a spatial discretization. In this framework, the only stationary points of the functional to minimize are the global minima.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信