{"title":"循环荷载下弹性粘塑性结构的最优控制方法","authors":"Michaël Peigney, Claude Stolz","doi":"10.1016/S1620-7742(01)01381-2","DOIUrl":null,"url":null,"abstract":"<div><p>The optimal control theory is used to study the asymptotic behavior of elastoviscoplastic structures under cyclic loading. With this approach the asymptotic state is solution of a minimization problem. For practical applications an approximate problem is introduced consistently with a spatial discretization. In this framework, the only stationary points of the functional to minimize are the global minima.</p></div>","PeriodicalId":100302,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","volume":"329 9","pages":"Pages 643-648"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01381-2","citationCount":"17","resultStr":"{\"title\":\"Approche par contrôle optimal des structures élastoviscoplastiques sous chargement cyclique\",\"authors\":\"Michaël Peigney, Claude Stolz\",\"doi\":\"10.1016/S1620-7742(01)01381-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The optimal control theory is used to study the asymptotic behavior of elastoviscoplastic structures under cyclic loading. With this approach the asymptotic state is solution of a minimization problem. For practical applications an approximate problem is introduced consistently with a spatial discretization. In this framework, the only stationary points of the functional to minimize are the global minima.</p></div>\",\"PeriodicalId\":100302,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"volume\":\"329 9\",\"pages\":\"Pages 643-648\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01381-2\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1620774201013812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1620774201013812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approche par contrôle optimal des structures élastoviscoplastiques sous chargement cyclique
The optimal control theory is used to study the asymptotic behavior of elastoviscoplastic structures under cyclic loading. With this approach the asymptotic state is solution of a minimization problem. For practical applications an approximate problem is introduced consistently with a spatial discretization. In this framework, the only stationary points of the functional to minimize are the global minima.