连续时间非线性回归模型残差相关图的渐近正态性

IF 0.7 Q3 STATISTICS & PROBABILITY
A. Ivanov, K. Moskvychova
{"title":"连续时间非线性回归模型残差相关图的渐近正态性","authors":"A. Ivanov, K. Moskvychova","doi":"10.15559/20-vmsta170","DOIUrl":null,"url":null,"abstract":"In a continuous time nonlinear regression model the residual correlogram is considered as an estimator of the stationary Gaussian random noise covariance function. For this estimator the functional central limit theorem is proved in the space of continuous functions. The result obtained shows that the limiting sample continuous Gaussian random process coincides with the limiting process in the central limit theorem for standard correlogram of the random noise in the specified regression model.","PeriodicalId":42685,"journal":{"name":"Modern Stochastics-Theory and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic normality of the residual correlogram in the continuous-time nonlinear regression model\",\"authors\":\"A. Ivanov, K. Moskvychova\",\"doi\":\"10.15559/20-vmsta170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a continuous time nonlinear regression model the residual correlogram is considered as an estimator of the stationary Gaussian random noise covariance function. For this estimator the functional central limit theorem is proved in the space of continuous functions. The result obtained shows that the limiting sample continuous Gaussian random process coincides with the limiting process in the central limit theorem for standard correlogram of the random noise in the specified regression model.\",\"PeriodicalId\":42685,\"journal\":{\"name\":\"Modern Stochastics-Theory and Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Stochastics-Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15559/20-vmsta170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Stochastics-Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/20-vmsta170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在连续时间非线性回归模型中,残差相关图被认为是平稳高斯随机噪声协方差函数的估计量。对于这个估计量,在连续函数空间中证明了泛函中心极限定理。结果表明,在给定的回归模型中,极限样本连续高斯随机过程与随机噪声标准相关图的中心极限定理中的极限过程是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic normality of the residual correlogram in the continuous-time nonlinear regression model
In a continuous time nonlinear regression model the residual correlogram is considered as an estimator of the stationary Gaussian random noise covariance function. For this estimator the functional central limit theorem is proved in the space of continuous functions. The result obtained shows that the limiting sample continuous Gaussian random process coincides with the limiting process in the central limit theorem for standard correlogram of the random noise in the specified regression model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Stochastics-Theory and Applications
Modern Stochastics-Theory and Applications STATISTICS & PROBABILITY-
CiteScore
1.30
自引率
50.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信