{"title":"Hilbert空间上有界线性算子的角右对称性","authors":"S. M. S. Nabavi Sales","doi":"10.3336/gm.56.1.09","DOIUrl":null,"url":null,"abstract":"We introduce and characterize angular right symmetric and approximate angular right symmetric points of the algebra of all bounded linear operators defined on either real or complex Hilbert spaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Angular right symmetricity of bounded linear operators on Hilbert spaces\",\"authors\":\"S. M. S. Nabavi Sales\",\"doi\":\"10.3336/gm.56.1.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce and characterize angular right symmetric and approximate angular right symmetric points of the algebra of all bounded linear operators defined on either real or complex Hilbert spaces.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.56.1.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.56.1.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Angular right symmetricity of bounded linear operators on Hilbert spaces
We introduce and characterize angular right symmetric and approximate angular right symmetric points of the algebra of all bounded linear operators defined on either real or complex Hilbert spaces.