与风格素描:视觉搜索与草图和美学背景

J. Collomosse, Tu Bui, Michael J. Wilber, Chen Fang, Hailin Jin
{"title":"与风格素描:视觉搜索与草图和美学背景","authors":"J. Collomosse, Tu Bui, Michael J. Wilber, Chen Fang, Hailin Jin","doi":"10.1109/ICCV.2017.290","DOIUrl":null,"url":null,"abstract":"We propose a novel measure of visual similarity for image retrieval that incorporates both structural and aesthetic (style) constraints. Our algorithm accepts a query as sketched shape, and a set of one or more contextual images specifying the desired visual aesthetic. A triplet network is used to learn a feature embedding capable of measuring style similarity independent of structure, delivering significant gains over previous networks for style discrimination. We incorporate this model within a hierarchical triplet network to unify and learn a joint space from two discriminatively trained streams for style and structure. We demonstrate that this space enables, for the first time, styleconstrained sketch search over a diverse domain of digital artwork comprising graphics, paintings and drawings. We also briefly explore alternative query modalities.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"8 1","pages":"2679-2687"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Sketching with Style: Visual Search with Sketches and Aesthetic Context\",\"authors\":\"J. Collomosse, Tu Bui, Michael J. Wilber, Chen Fang, Hailin Jin\",\"doi\":\"10.1109/ICCV.2017.290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel measure of visual similarity for image retrieval that incorporates both structural and aesthetic (style) constraints. Our algorithm accepts a query as sketched shape, and a set of one or more contextual images specifying the desired visual aesthetic. A triplet network is used to learn a feature embedding capable of measuring style similarity independent of structure, delivering significant gains over previous networks for style discrimination. We incorporate this model within a hierarchical triplet network to unify and learn a joint space from two discriminatively trained streams for style and structure. We demonstrate that this space enables, for the first time, styleconstrained sketch search over a diverse domain of digital artwork comprising graphics, paintings and drawings. We also briefly explore alternative query modalities.\",\"PeriodicalId\":6559,\"journal\":{\"name\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"8 1\",\"pages\":\"2679-2687\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2017.290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

我们提出了一种新的图像检索视觉相似性测量方法,该方法结合了结构和美学(风格)约束。我们的算法接受一个作为草图形状的查询,以及一组指定所需视觉美感的一个或多个上下文图像。使用三元网络学习能够独立于结构测量风格相似性的特征嵌入,在风格识别方面比以前的网络有显著的提高。我们将该模型整合到一个分层三重网络中,以统一和学习两个判别训练流的联合空间,以获得风格和结构。我们首次展示了这个空间能够在包括图形、绘画和素描在内的数字艺术作品的不同领域中进行风格限制的素描搜索。我们还简要探讨了其他查询方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sketching with Style: Visual Search with Sketches and Aesthetic Context
We propose a novel measure of visual similarity for image retrieval that incorporates both structural and aesthetic (style) constraints. Our algorithm accepts a query as sketched shape, and a set of one or more contextual images specifying the desired visual aesthetic. A triplet network is used to learn a feature embedding capable of measuring style similarity independent of structure, delivering significant gains over previous networks for style discrimination. We incorporate this model within a hierarchical triplet network to unify and learn a joint space from two discriminatively trained streams for style and structure. We demonstrate that this space enables, for the first time, styleconstrained sketch search over a diverse domain of digital artwork comprising graphics, paintings and drawings. We also briefly explore alternative query modalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信