C. Baik, S. Jeon, D. Kim, G. Park, N. Sato, K. Yokoo
{"title":"ka波段谐波倍增陀螺行波管的实验研究","authors":"C. Baik, S. Jeon, D. Kim, G. Park, N. Sato, K. Yokoo","doi":"10.1109/ICIMW.2002.1076173","DOIUrl":null,"url":null,"abstract":"To achieve high power millimeter waves at Ka-band, a harmonic-multiplying gyro-TWT is developed. The designed interaction circuit is a 2-stage waveguide that consists of input and output sections divided by severing. Both stages are linearly tapered rectangular waveguides in which the fundamental TE/sub 10/ mode is used. Tapering the waveguides increases stabilities and bandwidth by distributed interaction when the grazing condition along the taper is satisfied. In this study, each stage employs X-band and Ka-band frequencies, respectively. Through the fundamental and the 3rd electron cyclotron harmonics at each stage, a harmonic-multiplying interaction occurs. As a result, a saturated gain of 23 dB, an electronic efficiency of 10%, and a bandwidth of 3% were predicted by a self-consistent nonlinear calculation on the assumption of 4% axial velocity spreads of electrons when an axis-encircling electron gun at a moderate beam voltage of 30 kV and a current of 1 A is employed.","PeriodicalId":23431,"journal":{"name":"Twenty Seventh International Conference on Infrared and Millimeter Waves","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of Ka-band harmonic multiplying gyro-TWT\",\"authors\":\"C. Baik, S. Jeon, D. Kim, G. Park, N. Sato, K. Yokoo\",\"doi\":\"10.1109/ICIMW.2002.1076173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To achieve high power millimeter waves at Ka-band, a harmonic-multiplying gyro-TWT is developed. The designed interaction circuit is a 2-stage waveguide that consists of input and output sections divided by severing. Both stages are linearly tapered rectangular waveguides in which the fundamental TE/sub 10/ mode is used. Tapering the waveguides increases stabilities and bandwidth by distributed interaction when the grazing condition along the taper is satisfied. In this study, each stage employs X-band and Ka-band frequencies, respectively. Through the fundamental and the 3rd electron cyclotron harmonics at each stage, a harmonic-multiplying interaction occurs. As a result, a saturated gain of 23 dB, an electronic efficiency of 10%, and a bandwidth of 3% were predicted by a self-consistent nonlinear calculation on the assumption of 4% axial velocity spreads of electrons when an axis-encircling electron gun at a moderate beam voltage of 30 kV and a current of 1 A is employed.\",\"PeriodicalId\":23431,\"journal\":{\"name\":\"Twenty Seventh International Conference on Infrared and Millimeter Waves\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Twenty Seventh International Conference on Infrared and Millimeter Waves\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIMW.2002.1076173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Twenty Seventh International Conference on Infrared and Millimeter Waves","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMW.2002.1076173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental investigation of Ka-band harmonic multiplying gyro-TWT
To achieve high power millimeter waves at Ka-band, a harmonic-multiplying gyro-TWT is developed. The designed interaction circuit is a 2-stage waveguide that consists of input and output sections divided by severing. Both stages are linearly tapered rectangular waveguides in which the fundamental TE/sub 10/ mode is used. Tapering the waveguides increases stabilities and bandwidth by distributed interaction when the grazing condition along the taper is satisfied. In this study, each stage employs X-band and Ka-band frequencies, respectively. Through the fundamental and the 3rd electron cyclotron harmonics at each stage, a harmonic-multiplying interaction occurs. As a result, a saturated gain of 23 dB, an electronic efficiency of 10%, and a bandwidth of 3% were predicted by a self-consistent nonlinear calculation on the assumption of 4% axial velocity spreads of electrons when an axis-encircling electron gun at a moderate beam voltage of 30 kV and a current of 1 A is employed.