{"title":"滚动接触疲劳和腐蚀对钢轨结构性能的综合影响","authors":"M. Mahmoodian, A. Seyfallahi Asl, C. Q. Li","doi":"10.1080/13287982.2020.1840012","DOIUrl":null,"url":null,"abstract":"ABSTRACT An accurate structural assessment of rails under combined effect of fatigue and corrosion prevents a phenomenal disaster, also saves millions of dollars and people’s lives. Recent studies which are proposed to simulate a precise model fail to take into account the different underlying mechanism for rail corrosion. The current study presents a numerical procedure to investigate crack initiation under combined effect of fatigue and corrosion. A three-dimensional (3D) finite element model (FEM) which accounts for rolling contact stresses due to wheel-rail contact loads is developed. Then, stress distribution is used in a MATLAB code to estimate the fatigue crack initiation life. The advantage of the proposed model is considering the combined effect of rolling contact fatigue and corrosion on structural integrity of rails. This model is applied to a case study of rail assessment in Melbourne, Australia. The cracks orientations and locations which were based on the FEM results were in good agreement with the field observations.","PeriodicalId":45617,"journal":{"name":"Australian Journal of Structural Engineering","volume":"5 1","pages":"320 - 328"},"PeriodicalIF":0.9000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Combined effect of rolling contact fatigue and corrosion on structural performance of rails\",\"authors\":\"M. Mahmoodian, A. Seyfallahi Asl, C. Q. Li\",\"doi\":\"10.1080/13287982.2020.1840012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT An accurate structural assessment of rails under combined effect of fatigue and corrosion prevents a phenomenal disaster, also saves millions of dollars and people’s lives. Recent studies which are proposed to simulate a precise model fail to take into account the different underlying mechanism for rail corrosion. The current study presents a numerical procedure to investigate crack initiation under combined effect of fatigue and corrosion. A three-dimensional (3D) finite element model (FEM) which accounts for rolling contact stresses due to wheel-rail contact loads is developed. Then, stress distribution is used in a MATLAB code to estimate the fatigue crack initiation life. The advantage of the proposed model is considering the combined effect of rolling contact fatigue and corrosion on structural integrity of rails. This model is applied to a case study of rail assessment in Melbourne, Australia. The cracks orientations and locations which were based on the FEM results were in good agreement with the field observations.\",\"PeriodicalId\":45617,\"journal\":{\"name\":\"Australian Journal of Structural Engineering\",\"volume\":\"5 1\",\"pages\":\"320 - 328\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13287982.2020.1840012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13287982.2020.1840012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Combined effect of rolling contact fatigue and corrosion on structural performance of rails
ABSTRACT An accurate structural assessment of rails under combined effect of fatigue and corrosion prevents a phenomenal disaster, also saves millions of dollars and people’s lives. Recent studies which are proposed to simulate a precise model fail to take into account the different underlying mechanism for rail corrosion. The current study presents a numerical procedure to investigate crack initiation under combined effect of fatigue and corrosion. A three-dimensional (3D) finite element model (FEM) which accounts for rolling contact stresses due to wheel-rail contact loads is developed. Then, stress distribution is used in a MATLAB code to estimate the fatigue crack initiation life. The advantage of the proposed model is considering the combined effect of rolling contact fatigue and corrosion on structural integrity of rails. This model is applied to a case study of rail assessment in Melbourne, Australia. The cracks orientations and locations which were based on the FEM results were in good agreement with the field observations.
期刊介绍:
The Australian Journal of Structural Engineering (AJSE) is published under the auspices of the Structural College Board of Engineers Australia. It fulfils part of the Board''s mission for Continuing Professional Development. The journal also offers a means for exchange and interaction of scientific and professional issues and technical developments. The journal is open to members and non-members of Engineers Australia. Original papers on research and development (Technical Papers) and professional matters and achievements (Professional Papers) in all areas relevant to the science, art and practice of structural engineering are considered for possible publication. All papers and technical notes are peer-reviewed. The fundamental criterion for acceptance for publication is the intellectual and professional value of the contribution. Occasionally, papers previously published in essentially the same form elsewhere may be considered for publication. In this case acknowledgement to prior publication must be included in a footnote on page one of the manuscript. These papers are peer-reviewed as new submissions. The length of acceptable contributions typically should not exceed 4,000 to 5,000 word equivalents. Longer manuscripts may be considered at the discretion of the Editor. Technical Notes typically should not exceed about 1,000 word equivalents. Discussions on a Paper or Note published in the AJSE are welcomed. Discussions must address significant matters related to the content of a Paper or Technical Note and may include supplementary and critical comments and questions regarding content.