C. R. M. Araújo, Délis Galvão Guimarães, Sidney Silva Simplício, Valéria Carlos de Sousa, Klinger Antonio da Franca Rodrigues, Fernando Aércio A. Carvalho, Sabrina M. P. Carneiro, Marcília Pinheiro da Costa, Arlan De A. Gonsalves
{"title":"萘醌类杂合物的合成及抗利什曼原虫活性研究","authors":"C. R. M. Araújo, Délis Galvão Guimarães, Sidney Silva Simplício, Valéria Carlos de Sousa, Klinger Antonio da Franca Rodrigues, Fernando Aércio A. Carvalho, Sabrina M. P. Carneiro, Marcília Pinheiro da Costa, Arlan De A. Gonsalves","doi":"10.15446/rcciquifa.v50n2.92861","DOIUrl":null,"url":null,"abstract":"Introduction: leishmaniasis is a disease caused by protozoa of the genus Leishmania and is considered endemic in 98 countries. Treatment with pentavalent antimonials has a high toxicity, which motivates the search for effective and less toxic drugs. α- and β-lapachones have shown different biological activities, including antiprotozoa. In recent studies, the isonicotinoylhydrazone and phthalazinylhydrazone groups were considered innovative in the development of antileishmania drugs. Molecular hybridization is a strategy for the rational development of new prototypes, where the main compound is produced through the appropriate binding of pharmacophoric subunits. Aims: to synthesize four hybrids of α- and β-lapachones, together with the isonicotinoylhydrazone and phthalazinylhydrazone groups and to determine the antileishmania activity against the promastigotic forms of L. amazonensis, L. infantum and L. major. Results: β-lapachone derivatives were more active against all tested leishmania species. ΒACIL (IC50 0.044µM) and βHDZ (IC50 0.023µM) showed 15-fold higher activity than amphotericin B. The high selectivity index exhibited by the compounds indicates greater safety for vertebrate host cells. Conclusion: the results of this work show that the hybrids βACIL and βHDZ are promising molecules for the development of new antileishmania drugs.","PeriodicalId":21220,"journal":{"name":"Revista Colombiana de Ciencias Químico-Farmacéuticas","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and antileishmanial activity of naphthoquinone-based hybrids\",\"authors\":\"C. R. M. Araújo, Délis Galvão Guimarães, Sidney Silva Simplício, Valéria Carlos de Sousa, Klinger Antonio da Franca Rodrigues, Fernando Aércio A. Carvalho, Sabrina M. P. Carneiro, Marcília Pinheiro da Costa, Arlan De A. Gonsalves\",\"doi\":\"10.15446/rcciquifa.v50n2.92861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: leishmaniasis is a disease caused by protozoa of the genus Leishmania and is considered endemic in 98 countries. Treatment with pentavalent antimonials has a high toxicity, which motivates the search for effective and less toxic drugs. α- and β-lapachones have shown different biological activities, including antiprotozoa. In recent studies, the isonicotinoylhydrazone and phthalazinylhydrazone groups were considered innovative in the development of antileishmania drugs. Molecular hybridization is a strategy for the rational development of new prototypes, where the main compound is produced through the appropriate binding of pharmacophoric subunits. Aims: to synthesize four hybrids of α- and β-lapachones, together with the isonicotinoylhydrazone and phthalazinylhydrazone groups and to determine the antileishmania activity against the promastigotic forms of L. amazonensis, L. infantum and L. major. Results: β-lapachone derivatives were more active against all tested leishmania species. ΒACIL (IC50 0.044µM) and βHDZ (IC50 0.023µM) showed 15-fold higher activity than amphotericin B. The high selectivity index exhibited by the compounds indicates greater safety for vertebrate host cells. Conclusion: the results of this work show that the hybrids βACIL and βHDZ are promising molecules for the development of new antileishmania drugs.\",\"PeriodicalId\":21220,\"journal\":{\"name\":\"Revista Colombiana de Ciencias Químico-Farmacéuticas\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Ciencias Químico-Farmacéuticas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/rcciquifa.v50n2.92861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Ciencias Químico-Farmacéuticas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/rcciquifa.v50n2.92861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis and antileishmanial activity of naphthoquinone-based hybrids
Introduction: leishmaniasis is a disease caused by protozoa of the genus Leishmania and is considered endemic in 98 countries. Treatment with pentavalent antimonials has a high toxicity, which motivates the search for effective and less toxic drugs. α- and β-lapachones have shown different biological activities, including antiprotozoa. In recent studies, the isonicotinoylhydrazone and phthalazinylhydrazone groups were considered innovative in the development of antileishmania drugs. Molecular hybridization is a strategy for the rational development of new prototypes, where the main compound is produced through the appropriate binding of pharmacophoric subunits. Aims: to synthesize four hybrids of α- and β-lapachones, together with the isonicotinoylhydrazone and phthalazinylhydrazone groups and to determine the antileishmania activity against the promastigotic forms of L. amazonensis, L. infantum and L. major. Results: β-lapachone derivatives were more active against all tested leishmania species. ΒACIL (IC50 0.044µM) and βHDZ (IC50 0.023µM) showed 15-fold higher activity than amphotericin B. The high selectivity index exhibited by the compounds indicates greater safety for vertebrate host cells. Conclusion: the results of this work show that the hybrids βACIL and βHDZ are promising molecules for the development of new antileishmania drugs.