磁场下无序系统中的量子输运:基于算子代数的研究

E. Prodan
{"title":"磁场下无序系统中的量子输运:基于算子代数的研究","authors":"E. Prodan","doi":"10.1093/amrx/abs017","DOIUrl":null,"url":null,"abstract":"The linear conductivity tensor for generic homogeneous, microscopic quantum models was formulated as a noncommutative Kubo formula in Refs. \\cite{BELLISSARD:1994xj,Schulz-Baldes:1998vm,Schulz-Baldes:1998oq}. This formula was derived directly in the thermodynamic limit, within the framework of $C^*$-algebras and noncommutative calculi defined over infinite spaces. As such, the numerical implementation of the formalism encountered fundamental obstacles. The present work defines a $C^*$-algebra and an approximate noncommutative calculus over a finite real-space torus, which naturally leads to an approximate finite-volume noncommutative Kubo formula, amenable on a computer. For finite temperatures and dissipation, it is shown that this approximate formula converges exponentially fast to its thermodynamic limit, which is the exact noncommutative Kubo formula. The approximate noncommutative Kubo formula is then deconstructed to a form that is implementable on a computer and simulations of the quantum transport in a 2-dimensional disordered lattice gas in a magnetic field are presented.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"30 1","pages":"176-265"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Quantum Transport in Disordered Systems Under Magnetic Fields: A Study Based on Operator Algebras\",\"authors\":\"E. Prodan\",\"doi\":\"10.1093/amrx/abs017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The linear conductivity tensor for generic homogeneous, microscopic quantum models was formulated as a noncommutative Kubo formula in Refs. \\\\cite{BELLISSARD:1994xj,Schulz-Baldes:1998vm,Schulz-Baldes:1998oq}. This formula was derived directly in the thermodynamic limit, within the framework of $C^*$-algebras and noncommutative calculi defined over infinite spaces. As such, the numerical implementation of the formalism encountered fundamental obstacles. The present work defines a $C^*$-algebra and an approximate noncommutative calculus over a finite real-space torus, which naturally leads to an approximate finite-volume noncommutative Kubo formula, amenable on a computer. For finite temperatures and dissipation, it is shown that this approximate formula converges exponentially fast to its thermodynamic limit, which is the exact noncommutative Kubo formula. The approximate noncommutative Kubo formula is then deconstructed to a form that is implementable on a computer and simulations of the quantum transport in a 2-dimensional disordered lattice gas in a magnetic field are presented.\",\"PeriodicalId\":89656,\"journal\":{\"name\":\"Applied mathematics research express : AMRX\",\"volume\":\"30 1\",\"pages\":\"176-265\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied mathematics research express : AMRX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/amrx/abs017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/amrx/abs017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

一般齐次微观量子模型的线性电导率张量在参考文献中被表述为非交换的Kubo公式。\cite{BELLISSARD:1994xj,Schulz-Baldes:1998vm,Schulz-Baldes:1998oq}。这个公式是在热力学极限下直接推导出来的,在无穷空间上定义的$C^*$ -代数和非交换微积分的框架内。因此,形式主义的数字实施遇到了根本的障碍。本工作定义了一个$C^*$ -代数和一个有限实空间环面上的近似非交换微积分,这自然导致了一个近似有限体积非交换的Kubo公式,可以在计算机上适用。对于有限的温度和耗散,证明了该近似公式以指数速度收敛到它的热力学极限,即精确的非交换Kubo公式。然后将近似非交换的久保公式解构为可在计算机上实现的形式,并模拟了二维无序晶格气体在磁场中的量子输运。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Transport in Disordered Systems Under Magnetic Fields: A Study Based on Operator Algebras
The linear conductivity tensor for generic homogeneous, microscopic quantum models was formulated as a noncommutative Kubo formula in Refs. \cite{BELLISSARD:1994xj,Schulz-Baldes:1998vm,Schulz-Baldes:1998oq}. This formula was derived directly in the thermodynamic limit, within the framework of $C^*$-algebras and noncommutative calculi defined over infinite spaces. As such, the numerical implementation of the formalism encountered fundamental obstacles. The present work defines a $C^*$-algebra and an approximate noncommutative calculus over a finite real-space torus, which naturally leads to an approximate finite-volume noncommutative Kubo formula, amenable on a computer. For finite temperatures and dissipation, it is shown that this approximate formula converges exponentially fast to its thermodynamic limit, which is the exact noncommutative Kubo formula. The approximate noncommutative Kubo formula is then deconstructed to a form that is implementable on a computer and simulations of the quantum transport in a 2-dimensional disordered lattice gas in a magnetic field are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信