{"title":"部分脱木质素生物质对木聚糖的增溶作用及对木聚糖残馀木质素的去除","authors":"R. B. Melati, D. C. Sass, J. Contiero, M. Brienzo","doi":"10.3390/polysaccharides4020013","DOIUrl":null,"url":null,"abstract":"Xylan is a macromolecule of industrial interest that can be solubilized from lignocellulosic materials, such as sugarcane bagasse, which is a renewable source. However, the solubilization methods of xylan need to be better developed for use in industrial applications. The main objective of this study was to evaluate xylan solubilization methods with higher yields and purity by using biomasses/fractions of sugarcane: leaf and stem, internode, node, and external fraction. Two strategies were evaluated by applying diluted sodium chlorite, sodium sulfite, and hydrogen peroxide: a delignification of the biomass before xylan solubilization; and the delignification of the solubilized xylan for residual lignin removal. The delignification of the biomass before the xylan solubilization enabled to identify material and specific conditions for yields higher than 90%. Residual lignin varied from 3.14 to 18.06%, with hydrogen peroxide in alkaline medium partial delignification shown to be effective. The delignification of xylan presented better results using diluted hydrogen peroxide, with a reduction of 58.44% of the initial lignin content. The solubilized xylans were used as a substrate for xylanase activities, resulting in higher activity than commercial xylan. In the delignification of the biomasses, hydrogen peroxide was the reagent with better results concerning the yield, purity, and solubility of the xylan. This reagent (diluted) was also better in the delignification of the solubilized xylan, resulting in lower residual lignin content. The solubility and purity tests (low salt content) indicated that the solubilized xylan presented characteristics that were similar to or even better than commercial xylan.","PeriodicalId":18775,"journal":{"name":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","volume":"123 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Xylan Solubilization from Partially Delignified Biomass, and Residual Lignin Removal from Solubilized Xylan\",\"authors\":\"R. B. Melati, D. C. Sass, J. Contiero, M. Brienzo\",\"doi\":\"10.3390/polysaccharides4020013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Xylan is a macromolecule of industrial interest that can be solubilized from lignocellulosic materials, such as sugarcane bagasse, which is a renewable source. However, the solubilization methods of xylan need to be better developed for use in industrial applications. The main objective of this study was to evaluate xylan solubilization methods with higher yields and purity by using biomasses/fractions of sugarcane: leaf and stem, internode, node, and external fraction. Two strategies were evaluated by applying diluted sodium chlorite, sodium sulfite, and hydrogen peroxide: a delignification of the biomass before xylan solubilization; and the delignification of the solubilized xylan for residual lignin removal. The delignification of the biomass before the xylan solubilization enabled to identify material and specific conditions for yields higher than 90%. Residual lignin varied from 3.14 to 18.06%, with hydrogen peroxide in alkaline medium partial delignification shown to be effective. The delignification of xylan presented better results using diluted hydrogen peroxide, with a reduction of 58.44% of the initial lignin content. The solubilized xylans were used as a substrate for xylanase activities, resulting in higher activity than commercial xylan. In the delignification of the biomasses, hydrogen peroxide was the reagent with better results concerning the yield, purity, and solubility of the xylan. This reagent (diluted) was also better in the delignification of the solubilized xylan, resulting in lower residual lignin content. The solubility and purity tests (low salt content) indicated that the solubilized xylan presented characteristics that were similar to or even better than commercial xylan.\",\"PeriodicalId\":18775,\"journal\":{\"name\":\"Natural Polysaccharides in Drug Delivery and Biomedical Applications\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Polysaccharides in Drug Delivery and Biomedical Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/polysaccharides4020013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/polysaccharides4020013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Xylan Solubilization from Partially Delignified Biomass, and Residual Lignin Removal from Solubilized Xylan
Xylan is a macromolecule of industrial interest that can be solubilized from lignocellulosic materials, such as sugarcane bagasse, which is a renewable source. However, the solubilization methods of xylan need to be better developed for use in industrial applications. The main objective of this study was to evaluate xylan solubilization methods with higher yields and purity by using biomasses/fractions of sugarcane: leaf and stem, internode, node, and external fraction. Two strategies were evaluated by applying diluted sodium chlorite, sodium sulfite, and hydrogen peroxide: a delignification of the biomass before xylan solubilization; and the delignification of the solubilized xylan for residual lignin removal. The delignification of the biomass before the xylan solubilization enabled to identify material and specific conditions for yields higher than 90%. Residual lignin varied from 3.14 to 18.06%, with hydrogen peroxide in alkaline medium partial delignification shown to be effective. The delignification of xylan presented better results using diluted hydrogen peroxide, with a reduction of 58.44% of the initial lignin content. The solubilized xylans were used as a substrate for xylanase activities, resulting in higher activity than commercial xylan. In the delignification of the biomasses, hydrogen peroxide was the reagent with better results concerning the yield, purity, and solubility of the xylan. This reagent (diluted) was also better in the delignification of the solubilized xylan, resulting in lower residual lignin content. The solubility and purity tests (low salt content) indicated that the solubilized xylan presented characteristics that were similar to or even better than commercial xylan.