Wen-jie Cheng, Hongbing Liu, Tan Jie, Zhishui Yu, Q. Shu
{"title":"2060-T8/2099-T83铝锂合金激光焊接组织分析及疲劳行为","authors":"Wen-jie Cheng, Hongbing Liu, Tan Jie, Zhishui Yu, Q. Shu","doi":"10.3390/COATINGS11060693","DOIUrl":null,"url":null,"abstract":"In this paper, the microstructure analysis and performance research of dual laser beam welded 2060-T8/2099-T83 aluminum–lithium alloys were carried out. First, the macroscopic morphology and microstructure characteristics of T-joint aluminum–lithium alloys under different welding conditions were observed. Then the effect of welding parameters and pore defects on tensile and fatigue properties of the weld were carried out and the experimental results were analyzed. It was found that the weld heat input has a significant influence on the penetration of the welded aluminum–lithium alloys joint. When the laser power is too high, the weld will absorb more laser energy and the increase in the evaporation of magnesium will further increase the weld penetration. When the penetration depth increases, the transverse tensile strength tends to decrease. There is no obvious rule for the effect of pore defects on the tensile strength of the weld. At the same time, the heat input of the weld is inversely proportional to the porosity. When the weld heat input increases from 19.41 to 23.33 kJ/m, the porosity decreases from 5.35% to 2.08%. During the fatigue test, it was confirmed that the existence of pore defects would reduce the fatigue life of the weld. In addition, from the analysis of the fatigue fracture morphology it can be found that when the porosity is low, the weld toe is the main source of fatigue cracks. The crack propagation zone shows a typical beach pattern and the final fracture of the base metal presents the characteristics of a brittle fracture. While, when the porosity is high, the crack source is mainly located at the pore defects. T-joint fractures from the inside of the weld and the fracture in the final fracture zone have obvious pore defects and dimples.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":"5 1","pages":"693"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Microstructure Analysis and Fatigue Behavior of Laser Beam Welding 2060-T8/2099-T83 Aluminum–Lithium Alloys\",\"authors\":\"Wen-jie Cheng, Hongbing Liu, Tan Jie, Zhishui Yu, Q. Shu\",\"doi\":\"10.3390/COATINGS11060693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the microstructure analysis and performance research of dual laser beam welded 2060-T8/2099-T83 aluminum–lithium alloys were carried out. First, the macroscopic morphology and microstructure characteristics of T-joint aluminum–lithium alloys under different welding conditions were observed. Then the effect of welding parameters and pore defects on tensile and fatigue properties of the weld were carried out and the experimental results were analyzed. It was found that the weld heat input has a significant influence on the penetration of the welded aluminum–lithium alloys joint. When the laser power is too high, the weld will absorb more laser energy and the increase in the evaporation of magnesium will further increase the weld penetration. When the penetration depth increases, the transverse tensile strength tends to decrease. There is no obvious rule for the effect of pore defects on the tensile strength of the weld. At the same time, the heat input of the weld is inversely proportional to the porosity. When the weld heat input increases from 19.41 to 23.33 kJ/m, the porosity decreases from 5.35% to 2.08%. During the fatigue test, it was confirmed that the existence of pore defects would reduce the fatigue life of the weld. In addition, from the analysis of the fatigue fracture morphology it can be found that when the porosity is low, the weld toe is the main source of fatigue cracks. The crack propagation zone shows a typical beach pattern and the final fracture of the base metal presents the characteristics of a brittle fracture. While, when the porosity is high, the crack source is mainly located at the pore defects. T-joint fractures from the inside of the weld and the fracture in the final fracture zone have obvious pore defects and dimples.\",\"PeriodicalId\":22482,\"journal\":{\"name\":\"THE Coatings\",\"volume\":\"5 1\",\"pages\":\"693\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THE Coatings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/COATINGS11060693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE Coatings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/COATINGS11060693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microstructure Analysis and Fatigue Behavior of Laser Beam Welding 2060-T8/2099-T83 Aluminum–Lithium Alloys
In this paper, the microstructure analysis and performance research of dual laser beam welded 2060-T8/2099-T83 aluminum–lithium alloys were carried out. First, the macroscopic morphology and microstructure characteristics of T-joint aluminum–lithium alloys under different welding conditions were observed. Then the effect of welding parameters and pore defects on tensile and fatigue properties of the weld were carried out and the experimental results were analyzed. It was found that the weld heat input has a significant influence on the penetration of the welded aluminum–lithium alloys joint. When the laser power is too high, the weld will absorb more laser energy and the increase in the evaporation of magnesium will further increase the weld penetration. When the penetration depth increases, the transverse tensile strength tends to decrease. There is no obvious rule for the effect of pore defects on the tensile strength of the weld. At the same time, the heat input of the weld is inversely proportional to the porosity. When the weld heat input increases from 19.41 to 23.33 kJ/m, the porosity decreases from 5.35% to 2.08%. During the fatigue test, it was confirmed that the existence of pore defects would reduce the fatigue life of the weld. In addition, from the analysis of the fatigue fracture morphology it can be found that when the porosity is low, the weld toe is the main source of fatigue cracks. The crack propagation zone shows a typical beach pattern and the final fracture of the base metal presents the characteristics of a brittle fracture. While, when the porosity is high, the crack source is mainly located at the pore defects. T-joint fractures from the inside of the weld and the fracture in the final fracture zone have obvious pore defects and dimples.