基于深度学习的自动验证系统接口识别

Andi Zheng, Yaqiong Fu, Mingze Dong, Xinyi Du, Yue-ning Chen, Jinglin Huang
{"title":"基于深度学习的自动验证系统接口识别","authors":"Andi Zheng, Yaqiong Fu, Mingze Dong, Xinyi Du, Yue-ning Chen, Jinglin Huang","doi":"10.1109/ICIEA51954.2021.9516409","DOIUrl":null,"url":null,"abstract":"Automatic verification system is the future trend in the metrological verification field. However, it is still a problem waiting to be solved that the system can automatically recognize instrument interfaces with different models and can record data. Based on YOLOv3 deep learning algorithm, this paper shoots and makes instrument interface data sets independently. In addition, the network model training is conducted under the PaddlePaddle framework. On the LabView platform, the encapsulation model has designed that the automatic verification system instrument interface recognition module is used by automatic verification system. Through real machine tests, the instrument interface recognition module can effectively identify the instrument interface to be checked and can identify multiple data windows, indicating that the method can meet the tasks of instrument interface recognition in the automatic verification system.","PeriodicalId":6809,"journal":{"name":"2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)","volume":"28 1","pages":"46-49"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface Identification of Automatic Verification System Based on Deep Learning\",\"authors\":\"Andi Zheng, Yaqiong Fu, Mingze Dong, Xinyi Du, Yue-ning Chen, Jinglin Huang\",\"doi\":\"10.1109/ICIEA51954.2021.9516409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic verification system is the future trend in the metrological verification field. However, it is still a problem waiting to be solved that the system can automatically recognize instrument interfaces with different models and can record data. Based on YOLOv3 deep learning algorithm, this paper shoots and makes instrument interface data sets independently. In addition, the network model training is conducted under the PaddlePaddle framework. On the LabView platform, the encapsulation model has designed that the automatic verification system instrument interface recognition module is used by automatic verification system. Through real machine tests, the instrument interface recognition module can effectively identify the instrument interface to be checked and can identify multiple data windows, indicating that the method can meet the tasks of instrument interface recognition in the automatic verification system.\",\"PeriodicalId\":6809,\"journal\":{\"name\":\"2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"28 1\",\"pages\":\"46-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA51954.2021.9516409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA51954.2021.9516409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动检定系统是计量检定领域的发展趋势。但是,系统能否自动识别不同型号的仪器接口并记录数据,仍然是一个有待解决的问题。基于YOLOv3深度学习算法,独立拍摄制作仪器接口数据集。此外,在PaddlePaddle框架下进行网络模型训练。在LabView平台上,设计了自动检定系统仪表接口识别模块的封装模型,供自动检定系统使用。通过实机测试,该仪器接口识别模块能有效识别待检仪器接口,并能识别多个数据窗口,表明该方法能满足自动检定系统中仪器接口识别的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interface Identification of Automatic Verification System Based on Deep Learning
Automatic verification system is the future trend in the metrological verification field. However, it is still a problem waiting to be solved that the system can automatically recognize instrument interfaces with different models and can record data. Based on YOLOv3 deep learning algorithm, this paper shoots and makes instrument interface data sets independently. In addition, the network model training is conducted under the PaddlePaddle framework. On the LabView platform, the encapsulation model has designed that the automatic verification system instrument interface recognition module is used by automatic verification system. Through real machine tests, the instrument interface recognition module can effectively identify the instrument interface to be checked and can identify multiple data windows, indicating that the method can meet the tasks of instrument interface recognition in the automatic verification system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信