使用卷积神经网络建模横截面表格数据:波兰公司破产预测

IF 0.5 Q4 ECONOMICS
Aneta Dzik-Walczak, Maciej Odziemczyk
{"title":"使用卷积神经网络建模横截面表格数据:波兰公司破产预测","authors":"Aneta Dzik-Walczak, Maciej Odziemczyk","doi":"10.2478/ceej-2021-0024","DOIUrl":null,"url":null,"abstract":"Abstract The paper deals with the topic of modelling the probability of bankruptcy of Polish enterprises using convolutional neural networks. Convolutional networks take images as input, so it was thus necessary to apply the method of converting the observation vector to a matrix. Benchmarks for convolutional networks were logit models, random forests, XGBoost, and dense neural networks. Hyperparameters and model architecture were selected based on a random search and analysis of learning curves and experiments in folded, stratified cross-validation. In addition, the sensitivity of the results to data preprocessing was investigated. It was found that convolutional neural networks can be used to analyze cross-sectional tabular data, especially for the problem of modelling the probability of corporate bankruptcy. In order to achieve good results with models based on parameters updated by a gradient (neural networks and logit), it is necessary to use appropriate preprocessing techniques. Models based on decision trees have been shown to be insensitive to the data transformations used.","PeriodicalId":9951,"journal":{"name":"Central European Journal of Economic Modelling and Econometrics","volume":"60 1","pages":"352 - 377"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling cross-sectional tabular data using convolutional neural networks: Prediction of corporate bankruptcy in Poland\",\"authors\":\"Aneta Dzik-Walczak, Maciej Odziemczyk\",\"doi\":\"10.2478/ceej-2021-0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper deals with the topic of modelling the probability of bankruptcy of Polish enterprises using convolutional neural networks. Convolutional networks take images as input, so it was thus necessary to apply the method of converting the observation vector to a matrix. Benchmarks for convolutional networks were logit models, random forests, XGBoost, and dense neural networks. Hyperparameters and model architecture were selected based on a random search and analysis of learning curves and experiments in folded, stratified cross-validation. In addition, the sensitivity of the results to data preprocessing was investigated. It was found that convolutional neural networks can be used to analyze cross-sectional tabular data, especially for the problem of modelling the probability of corporate bankruptcy. In order to achieve good results with models based on parameters updated by a gradient (neural networks and logit), it is necessary to use appropriate preprocessing techniques. Models based on decision trees have been shown to be insensitive to the data transformations used.\",\"PeriodicalId\":9951,\"journal\":{\"name\":\"Central European Journal of Economic Modelling and Econometrics\",\"volume\":\"60 1\",\"pages\":\"352 - 377\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Economic Modelling and Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ceej-2021-0024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Economic Modelling and Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ceej-2021-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了用卷积神经网络对波兰企业破产概率进行建模的问题。卷积网络以图像作为输入,因此有必要采用将观测向量转换为矩阵的方法。卷积网络的基准是logit模型、随机森林、XGBoost和密集神经网络。基于随机搜索和学习曲线分析以及折叠分层交叉验证的实验,选择超参数和模型架构。此外,还研究了结果对数据预处理的敏感性。研究发现,卷积神经网络可以用于分析横截面表格数据,特别是对企业破产概率的建模问题。为了使基于梯度更新参数的模型(神经网络和logit)获得良好的结果,有必要使用适当的预处理技术。基于决策树的模型已被证明对所使用的数据转换不敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling cross-sectional tabular data using convolutional neural networks: Prediction of corporate bankruptcy in Poland
Abstract The paper deals with the topic of modelling the probability of bankruptcy of Polish enterprises using convolutional neural networks. Convolutional networks take images as input, so it was thus necessary to apply the method of converting the observation vector to a matrix. Benchmarks for convolutional networks were logit models, random forests, XGBoost, and dense neural networks. Hyperparameters and model architecture were selected based on a random search and analysis of learning curves and experiments in folded, stratified cross-validation. In addition, the sensitivity of the results to data preprocessing was investigated. It was found that convolutional neural networks can be used to analyze cross-sectional tabular data, especially for the problem of modelling the probability of corporate bankruptcy. In order to achieve good results with models based on parameters updated by a gradient (neural networks and logit), it is necessary to use appropriate preprocessing techniques. Models based on decision trees have been shown to be insensitive to the data transformations used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
9
期刊介绍: The Central European Journal of Economic Modelling and Econometrics (CEJEME) is a quarterly international journal. It aims to publish articles focusing on mathematical or statistical models in economic sciences. Papers covering the application of existing econometric techniques to a wide variety of problems in economics, in particular in macroeconomics and finance are welcome. Advanced empirical studies devoted to modelling and forecasting of Central and Eastern European economies are of particular interest. Any rigorous methods of statistical inference can be used and articles representing Bayesian econometrics are decidedly within the range of the Journal''s interests.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信