两个正相交圆柱壳的应力分布

A.C. Eringen, E.S. Suhubi
{"title":"两个正相交圆柱壳的应力分布","authors":"A.C. Eringen,&nbsp;E.S. Suhubi","doi":"10.1016/0369-5816(65)90082-7","DOIUrl":null,"url":null,"abstract":"<div><p>The boundary value problem concerned with the state of stress in two normally intersecting circular cylindrical shells subjected to internal pressure is formulated. The differential equations of the two shells are solved for a small ratio of radii (<span><math><mtext>ϱ</mtext><msub><mi></mi><mn>0</mn></msub><mtext>R</mtext><mtext> &lt; </mtext><mtext>1</mtext><mtext>3</mtext></math></span>) subject to edge conditions along the intersection curve and at the ends of the cylinders. The numerical results will be published in a later paper.</p></div>","PeriodicalId":100973,"journal":{"name":"Nuclear Structural Engineering","volume":"2 3","pages":"Pages 253-270"},"PeriodicalIF":0.0000,"publicationDate":"1965-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0369-5816(65)90082-7","citationCount":"42","resultStr":"{\"title\":\"Stress distribution at two normally intersecting cylindrical shells\",\"authors\":\"A.C. Eringen,&nbsp;E.S. Suhubi\",\"doi\":\"10.1016/0369-5816(65)90082-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The boundary value problem concerned with the state of stress in two normally intersecting circular cylindrical shells subjected to internal pressure is formulated. The differential equations of the two shells are solved for a small ratio of radii (<span><math><mtext>ϱ</mtext><msub><mi></mi><mn>0</mn></msub><mtext>R</mtext><mtext> &lt; </mtext><mtext>1</mtext><mtext>3</mtext></math></span>) subject to edge conditions along the intersection curve and at the ends of the cylinders. The numerical results will be published in a later paper.</p></div>\",\"PeriodicalId\":100973,\"journal\":{\"name\":\"Nuclear Structural Engineering\",\"volume\":\"2 3\",\"pages\":\"Pages 253-270\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1965-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0369-5816(65)90082-7\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0369581665900827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0369581665900827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

建立了两个正相交圆柱壳在内压作用下的应力状态的边值问题。求解两个壳体的微分方程时半径比很小(ϱ0R <13)受沿交点曲线和圆柱体两端的边缘条件的约束。数值结果将在以后的论文中发表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stress distribution at two normally intersecting cylindrical shells

The boundary value problem concerned with the state of stress in two normally intersecting circular cylindrical shells subjected to internal pressure is formulated. The differential equations of the two shells are solved for a small ratio of radii (ϱ0R < 13) subject to edge conditions along the intersection curve and at the ends of the cylinders. The numerical results will be published in a later paper.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信