平面凸码是可判定的

B. Bukh, R. Jeffs
{"title":"平面凸码是可判定的","authors":"B. Bukh, R. Jeffs","doi":"10.1137/22m1511187","DOIUrl":null,"url":null,"abstract":"We show that every convex code realizable by compact sets in the plane admits a realization consisting of polygons, and analogously every open convex code in the plane can be realized by interiors of polygons. We give factorial-type bounds on the number of vertices needed to form such realizations. Consequently we show that there is an algorithm to decide whether a convex code admits a closed or open realization in the plane.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Planar Convex Codes are Decidable\",\"authors\":\"B. Bukh, R. Jeffs\",\"doi\":\"10.1137/22m1511187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that every convex code realizable by compact sets in the plane admits a realization consisting of polygons, and analogously every open convex code in the plane can be realized by interiors of polygons. We give factorial-type bounds on the number of vertices needed to form such realizations. Consequently we show that there is an algorithm to decide whether a convex code admits a closed or open realization in the plane.\",\"PeriodicalId\":21749,\"journal\":{\"name\":\"SIAM J. Discret. Math.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Discret. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1511187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1511187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们证明了平面上每一个可由紧集实现的凸码都允许由多边形组成的实现,同样,平面上每一个开凸码都可以由多边形的内部实现。我们给出了形成这种实现所需的顶点数量的阶乘型界限。因此,我们证明了存在一种算法来决定凸码在平面上是否允许封闭或开放的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Planar Convex Codes are Decidable
We show that every convex code realizable by compact sets in the plane admits a realization consisting of polygons, and analogously every open convex code in the plane can be realized by interiors of polygons. We give factorial-type bounds on the number of vertices needed to form such realizations. Consequently we show that there is an algorithm to decide whether a convex code admits a closed or open realization in the plane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信