{"title":"平面凸码是可判定的","authors":"B. Bukh, R. Jeffs","doi":"10.1137/22m1511187","DOIUrl":null,"url":null,"abstract":"We show that every convex code realizable by compact sets in the plane admits a realization consisting of polygons, and analogously every open convex code in the plane can be realized by interiors of polygons. We give factorial-type bounds on the number of vertices needed to form such realizations. Consequently we show that there is an algorithm to decide whether a convex code admits a closed or open realization in the plane.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Planar Convex Codes are Decidable\",\"authors\":\"B. Bukh, R. Jeffs\",\"doi\":\"10.1137/22m1511187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that every convex code realizable by compact sets in the plane admits a realization consisting of polygons, and analogously every open convex code in the plane can be realized by interiors of polygons. We give factorial-type bounds on the number of vertices needed to form such realizations. Consequently we show that there is an algorithm to decide whether a convex code admits a closed or open realization in the plane.\",\"PeriodicalId\":21749,\"journal\":{\"name\":\"SIAM J. Discret. Math.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Discret. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1511187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1511187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that every convex code realizable by compact sets in the plane admits a realization consisting of polygons, and analogously every open convex code in the plane can be realized by interiors of polygons. We give factorial-type bounds on the number of vertices needed to form such realizations. Consequently we show that there is an algorithm to decide whether a convex code admits a closed or open realization in the plane.