{"title":"基于场景优化的基准控制问题求解","authors":"Roberto Rocchetta, L. Crespo, S. Kenny","doi":"10.1115/dscc2019-8949","DOIUrl":null,"url":null,"abstract":"\n This article introduces a scenario optimization framework for reliability-based design given measurements of the uncertain parameters. In contrast to traditional methods, scenario optimization makes direct use of the available data thereby eliminating the need for assuming a distribution class and estimating its hyper-parameters. Scenario theory provides formal bounds on the probabilistic performance of a design decision and certifies the system ability to comply with various requirements for future/unseen observations. This probabilistic certificate of correctness is non-asymptotic and distribution-free. Furthermore, chance-constrained optimization techniques are used to detect and eliminate the effects of outliers in the resulting optimal design. The proposed framework is exemplified on a benchmark robust control challenge problem having conflicting design objectives.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"31 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Solution of the Benchmark Control Problem by Scenario Optimization\",\"authors\":\"Roberto Rocchetta, L. Crespo, S. Kenny\",\"doi\":\"10.1115/dscc2019-8949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This article introduces a scenario optimization framework for reliability-based design given measurements of the uncertain parameters. In contrast to traditional methods, scenario optimization makes direct use of the available data thereby eliminating the need for assuming a distribution class and estimating its hyper-parameters. Scenario theory provides formal bounds on the probabilistic performance of a design decision and certifies the system ability to comply with various requirements for future/unseen observations. This probabilistic certificate of correctness is non-asymptotic and distribution-free. Furthermore, chance-constrained optimization techniques are used to detect and eliminate the effects of outliers in the resulting optimal design. The proposed framework is exemplified on a benchmark robust control challenge problem having conflicting design objectives.\",\"PeriodicalId\":41412,\"journal\":{\"name\":\"Mechatronic Systems and Control\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-8949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-8949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Solution of the Benchmark Control Problem by Scenario Optimization
This article introduces a scenario optimization framework for reliability-based design given measurements of the uncertain parameters. In contrast to traditional methods, scenario optimization makes direct use of the available data thereby eliminating the need for assuming a distribution class and estimating its hyper-parameters. Scenario theory provides formal bounds on the probabilistic performance of a design decision and certifies the system ability to comply with various requirements for future/unseen observations. This probabilistic certificate of correctness is non-asymptotic and distribution-free. Furthermore, chance-constrained optimization techniques are used to detect and eliminate the effects of outliers in the resulting optimal design. The proposed framework is exemplified on a benchmark robust control challenge problem having conflicting design objectives.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.