外场和结构参数对圆柱形量子点非线性光学特性的调谐

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
M. Jaouane, A. Sali, E. Kasapoglu, F. Ungan
{"title":"外场和结构参数对圆柱形量子点非线性光学特性的调谐","authors":"M. Jaouane, A. Sali, E. Kasapoglu, F. Ungan","doi":"10.1080/14786435.2023.2171499","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this present study, we have theoretically investigated the effect of applied external electric field and non-resonant intense laser field, as well as the adjustable physical parameters (A, M, and η) of the system, on the linear and nonlinear of GaAs/GaAlAs cylindrical quantum dot. The confinement potential of the quantum dot is composed of the axial potential with a Razavy-type quantum well in the z-direction, and the cylindrical-type potential in the radial direction. To achieve this goal, the wave functions, and the corresponding eigenvalues of the electron are investigated by resolving the time-independent Schrödinger equation using the diagonalisation technique in terms of the effective mass approximation. The linear and nonlinear optical properties’ expressions have been calculated with the help of the compact density matrix method. Our numerical results show that by changing the A, M, and η parameters, we can see a blueshift or redshift in the total optical absorption coefficients (TOACs) and relative refractive index changes (RRICs). Additionally, they are redshifted, and their extrema increase as the radius increases. The increase in electric field or laser field intensities generates a strong displacement of the resonant peak position towards the higher energies, diminishes the TOACs magnitude, and shrinks RRICs extrema. The model potential used in the computation is important, and the study of it will be practical in the development and research of nanostructures systems.","PeriodicalId":19856,"journal":{"name":"Philosophical Magazine","volume":"59 1","pages":"693 - 711"},"PeriodicalIF":1.5000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tuning of nonlinear optical characteristics of a cylindrical quantum dot by external fields and structure parameters\",\"authors\":\"M. Jaouane, A. Sali, E. Kasapoglu, F. Ungan\",\"doi\":\"10.1080/14786435.2023.2171499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this present study, we have theoretically investigated the effect of applied external electric field and non-resonant intense laser field, as well as the adjustable physical parameters (A, M, and η) of the system, on the linear and nonlinear of GaAs/GaAlAs cylindrical quantum dot. The confinement potential of the quantum dot is composed of the axial potential with a Razavy-type quantum well in the z-direction, and the cylindrical-type potential in the radial direction. To achieve this goal, the wave functions, and the corresponding eigenvalues of the electron are investigated by resolving the time-independent Schrödinger equation using the diagonalisation technique in terms of the effective mass approximation. The linear and nonlinear optical properties’ expressions have been calculated with the help of the compact density matrix method. Our numerical results show that by changing the A, M, and η parameters, we can see a blueshift or redshift in the total optical absorption coefficients (TOACs) and relative refractive index changes (RRICs). Additionally, they are redshifted, and their extrema increase as the radius increases. The increase in electric field or laser field intensities generates a strong displacement of the resonant peak position towards the higher energies, diminishes the TOACs magnitude, and shrinks RRICs extrema. The model potential used in the computation is important, and the study of it will be practical in the development and research of nanostructures systems.\",\"PeriodicalId\":19856,\"journal\":{\"name\":\"Philosophical Magazine\",\"volume\":\"59 1\",\"pages\":\"693 - 711\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Magazine\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14786435.2023.2171499\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14786435.2023.2171499","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

本文从理论上研究了外加电场和非共振强激光场,以及系统的可调物理参数(A、M和η)对GaAs/GaAlAs圆柱量子点线性和非线性的影响。量子点的约束势由z方向上具有razavi型量子阱的轴向势和径向上的圆柱型势组成。为了实现这一目标,波函数和电子的相应特征值通过使用有效质量近似的对角化技术解决时间无关Schrödinger方程来研究。利用致密密度矩阵法计算了其线性和非线性光学性质的表达式。数值结果表明,通过改变A、M和η参数,我们可以观察到总光吸收系数(TOACs)和相对折射率变化(RRICs)的蓝移或红移。此外,它们是红移的,它们的极值随着半径的增加而增加。电场或激光场强的增加会使共振峰位置向高能量方向发生强烈位移,减小toac大小,减小RRICs极值。计算中所使用的模型势对纳米结构体系的开发和研究具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tuning of nonlinear optical characteristics of a cylindrical quantum dot by external fields and structure parameters
ABSTRACT In this present study, we have theoretically investigated the effect of applied external electric field and non-resonant intense laser field, as well as the adjustable physical parameters (A, M, and η) of the system, on the linear and nonlinear of GaAs/GaAlAs cylindrical quantum dot. The confinement potential of the quantum dot is composed of the axial potential with a Razavy-type quantum well in the z-direction, and the cylindrical-type potential in the radial direction. To achieve this goal, the wave functions, and the corresponding eigenvalues of the electron are investigated by resolving the time-independent Schrödinger equation using the diagonalisation technique in terms of the effective mass approximation. The linear and nonlinear optical properties’ expressions have been calculated with the help of the compact density matrix method. Our numerical results show that by changing the A, M, and η parameters, we can see a blueshift or redshift in the total optical absorption coefficients (TOACs) and relative refractive index changes (RRICs). Additionally, they are redshifted, and their extrema increase as the radius increases. The increase in electric field or laser field intensities generates a strong displacement of the resonant peak position towards the higher energies, diminishes the TOACs magnitude, and shrinks RRICs extrema. The model potential used in the computation is important, and the study of it will be practical in the development and research of nanostructures systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Philosophical Magazine
Philosophical Magazine 工程技术-材料科学:综合
自引率
0.00%
发文量
93
审稿时长
4.7 months
期刊介绍: The Editors of Philosophical Magazine consider for publication contributions describing original experimental and theoretical results, computational simulations and concepts relating to the structure and properties of condensed matter. The submission of papers on novel measurements, phases, phenomena, and new types of material is encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信