非局部Liouville型方程的爆破解

Matteo Cozzi, Antonio J. Fern'andez
{"title":"非局部Liouville型方程的爆破解","authors":"Matteo Cozzi, Antonio J. Fern'andez","doi":"10.2422/2036-2145.202208_008","DOIUrl":null,"url":null,"abstract":"We consider the nonlocal Liouville type equation $$ (-\\Delta)^{\\frac{1}{2}} u = \\varepsilon \\kappa(x) e^u, \\quad u>0, \\quad \\mbox{in } I, \\qquad u = 0, \\quad \\mbox{in } \\mathbb{R} \\setminus I, $$ where $I$ is a union of $d \\geq 2$ disjoint bounded intervals, $\\kappa$ is a smooth bounded function with positive infimum and $\\varepsilon>0$ is a small parameter. For any integer $1 \\leq m \\leq d$, we construct a family of solutions $(u_\\varepsilon)_{\\varepsilon}$ which blow up at $m$ interior distinct points of $I$ and for which $\\varepsilon \\int_I \\kappa e^{u_\\varepsilon} \\, \\rightarrow 2 m \\pi$, as $\\varepsilon \\to 0$. Moreover, we show that, when $d = 2$ and $m$ is suitably large, no such construction is possible.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Blowing-up solutions for a nonlocal Liouville type equation\",\"authors\":\"Matteo Cozzi, Antonio J. Fern'andez\",\"doi\":\"10.2422/2036-2145.202208_008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the nonlocal Liouville type equation $$ (-\\\\Delta)^{\\\\frac{1}{2}} u = \\\\varepsilon \\\\kappa(x) e^u, \\\\quad u>0, \\\\quad \\\\mbox{in } I, \\\\qquad u = 0, \\\\quad \\\\mbox{in } \\\\mathbb{R} \\\\setminus I, $$ where $I$ is a union of $d \\\\geq 2$ disjoint bounded intervals, $\\\\kappa$ is a smooth bounded function with positive infimum and $\\\\varepsilon>0$ is a small parameter. For any integer $1 \\\\leq m \\\\leq d$, we construct a family of solutions $(u_\\\\varepsilon)_{\\\\varepsilon}$ which blow up at $m$ interior distinct points of $I$ and for which $\\\\varepsilon \\\\int_I \\\\kappa e^{u_\\\\varepsilon} \\\\, \\\\rightarrow 2 m \\\\pi$, as $\\\\varepsilon \\\\to 0$. Moreover, we show that, when $d = 2$ and $m$ is suitably large, no such construction is possible.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202208_008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202208_008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑非局部Liouville型方程$$ (-\Delta)^{\frac{1}{2}} u = \varepsilon \kappa(x) e^u, \quad u>0, \quad \mbox{in } I, \qquad u = 0, \quad \mbox{in } \mathbb{R} \setminus I, $$,其中$I$是$d \geq 2$不相交有界区间的并集,$\kappa$是正无穷值的光滑有界函数,$\varepsilon>0$是一个小参数。对于任意整数$1 \leq m \leq d$,我们构造一个解族$(u_\varepsilon)_{\varepsilon}$,它在$I$的内部不同点$m$爆炸,对于它$\varepsilon \int_I \kappa e^{u_\varepsilon} \, \rightarrow 2 m \pi$,为$\varepsilon \to 0$。此外,我们表明,当$d = 2$和$m$适当大时,不可能进行这样的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blowing-up solutions for a nonlocal Liouville type equation
We consider the nonlocal Liouville type equation $$ (-\Delta)^{\frac{1}{2}} u = \varepsilon \kappa(x) e^u, \quad u>0, \quad \mbox{in } I, \qquad u = 0, \quad \mbox{in } \mathbb{R} \setminus I, $$ where $I$ is a union of $d \geq 2$ disjoint bounded intervals, $\kappa$ is a smooth bounded function with positive infimum and $\varepsilon>0$ is a small parameter. For any integer $1 \leq m \leq d$, we construct a family of solutions $(u_\varepsilon)_{\varepsilon}$ which blow up at $m$ interior distinct points of $I$ and for which $\varepsilon \int_I \kappa e^{u_\varepsilon} \, \rightarrow 2 m \pi$, as $\varepsilon \to 0$. Moreover, we show that, when $d = 2$ and $m$ is suitably large, no such construction is possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信