基于视频的自动驾驶辅助

G. Zajic, Katarina Popovic, A. Gavrovska, I. Reljin, B. Reljin
{"title":"基于视频的自动驾驶辅助","authors":"G. Zajic, Katarina Popovic, A. Gavrovska, I. Reljin, B. Reljin","doi":"10.1109/ZINC50678.2020.9161771","DOIUrl":null,"url":null,"abstract":"Computer vision techniques implemented in modern vehicles should be designed to distinguish different changes in a video sequence, captured by RGB and RGBD cameras mounted in or out a vehicle. Autonomous driving process could improve safety of all passengers by introducing additional sensing. In this paper, we used input data from mentioned cameras acquired with inertial sensor for road roughness as a limiter of velocity. Abrupt changes of the velocity and driver comfort affects the driver’s head position. The head position is monitored using 3D skeleton model and depth information. The results show possibility of detection of the potential risk found for unusual driver behavior. Then, the human control could be taken by safety application and system.","PeriodicalId":6731,"journal":{"name":"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)","volume":"79 1","pages":"151-154"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Video-based Assistance for Autonomous Driving\",\"authors\":\"G. Zajic, Katarina Popovic, A. Gavrovska, I. Reljin, B. Reljin\",\"doi\":\"10.1109/ZINC50678.2020.9161771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer vision techniques implemented in modern vehicles should be designed to distinguish different changes in a video sequence, captured by RGB and RGBD cameras mounted in or out a vehicle. Autonomous driving process could improve safety of all passengers by introducing additional sensing. In this paper, we used input data from mentioned cameras acquired with inertial sensor for road roughness as a limiter of velocity. Abrupt changes of the velocity and driver comfort affects the driver’s head position. The head position is monitored using 3D skeleton model and depth information. The results show possibility of detection of the potential risk found for unusual driver behavior. Then, the human control could be taken by safety application and system.\",\"PeriodicalId\":6731,\"journal\":{\"name\":\"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)\",\"volume\":\"79 1\",\"pages\":\"151-154\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ZINC50678.2020.9161771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ZINC50678.2020.9161771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在现代车辆中实施的计算机视觉技术应设计为区分由安装在车辆内外的RGB和RGBD摄像机捕获的视频序列中的不同变化。自动驾驶过程可以通过引入额外的传感器来提高所有乘客的安全性。在本文中,我们使用上述相机的输入数据与惯性传感器获取的道路粗糙度作为速度限制。速度和驾驶员舒适度的突变会影响驾驶员的头部位置。头部位置监测使用3D骨骼模型和深度信息。结果显示了发现异常驾驶行为的潜在风险的可能性。然后通过安全应用和系统进行人为控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video-based Assistance for Autonomous Driving
Computer vision techniques implemented in modern vehicles should be designed to distinguish different changes in a video sequence, captured by RGB and RGBD cameras mounted in or out a vehicle. Autonomous driving process could improve safety of all passengers by introducing additional sensing. In this paper, we used input data from mentioned cameras acquired with inertial sensor for road roughness as a limiter of velocity. Abrupt changes of the velocity and driver comfort affects the driver’s head position. The head position is monitored using 3D skeleton model and depth information. The results show possibility of detection of the potential risk found for unusual driver behavior. Then, the human control could be taken by safety application and system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信