利用纬纱密度和拉拔平面变量优化三维角度互锁机织复合材料单轴拉伸应力-应变响应

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
M. F. Yahya
{"title":"利用纬纱密度和拉拔平面变量优化三维角度互锁机织复合材料单轴拉伸应力-应变响应","authors":"M. F. Yahya","doi":"10.24191/jmeche.v20i2.22062","DOIUrl":null,"url":null,"abstract":"Currently, 2D woven composites are extensively incorporated into a variety of technical automotive body parts and protective body armor owing to their excellent fabric strength performance. However, there is still a lack of attempts to utilize 3D woven fabrics for the same technical application. Hence, it is vital to examine the fundamental tensile strength of woven fabric composite materials when determining their suitability for end-use applications. This study aimed to investigate the novel effects of two parameters on the uniaxial tensile strength of a high-tenacity polyester three-layer 3D angle interlock (3DAI) woven fabric composite, namely, weave drafting draw-in insertion and weave density. Four different drafting patterns were considered: pointed (DRW 1), broken (DRW 2), broken mirror (DRW 3), and straight (DRW 4), for weft density at 14 and 25 pick.cm-1. Samples of the 3DAI woven fabric reinforced with epoxy composite at different drafting patterns and weft density combinations were produced and tested. Consequently, the maximum tensile stress and strain were recorded in the woven fabric composite sample with DRW 4 and 25 pick.cm-1 at 113 MPa and 11%, respectively. The study shows that different weft densities and draw-in plan settings play a significant role in the tensile strength performance of the 3DAI woven composite.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Uniaxial Tensile Stress-Strain Response of 3D Angle Interlock Woven Fabric Composite using Weft Density and Draw-In Plan Variables\",\"authors\":\"M. F. Yahya\",\"doi\":\"10.24191/jmeche.v20i2.22062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, 2D woven composites are extensively incorporated into a variety of technical automotive body parts and protective body armor owing to their excellent fabric strength performance. However, there is still a lack of attempts to utilize 3D woven fabrics for the same technical application. Hence, it is vital to examine the fundamental tensile strength of woven fabric composite materials when determining their suitability for end-use applications. This study aimed to investigate the novel effects of two parameters on the uniaxial tensile strength of a high-tenacity polyester three-layer 3D angle interlock (3DAI) woven fabric composite, namely, weave drafting draw-in insertion and weave density. Four different drafting patterns were considered: pointed (DRW 1), broken (DRW 2), broken mirror (DRW 3), and straight (DRW 4), for weft density at 14 and 25 pick.cm-1. Samples of the 3DAI woven fabric reinforced with epoxy composite at different drafting patterns and weft density combinations were produced and tested. Consequently, the maximum tensile stress and strain were recorded in the woven fabric composite sample with DRW 4 and 25 pick.cm-1 at 113 MPa and 11%, respectively. The study shows that different weft densities and draw-in plan settings play a significant role in the tensile strength performance of the 3DAI woven composite.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24191/jmeche.v20i2.22062\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24191/jmeche.v20i2.22062","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目前,二维编织复合材料由于其优异的织物强度性能,被广泛应用于各种技术汽车车身部件和防护装甲中。然而,在同样的技术应用中,仍然缺乏利用3D机织物的尝试。因此,在确定机织复合材料是否适合最终用途时,检查其基本抗拉强度至关重要。本研究旨在探讨两个参数对高强涤纶三层三维角互锁(3DAI)机织物复合材料单轴拉伸强度的新影响,即组织牵伸、拉伸和组织密度。考虑了四种不同的牵伸模式:尖(DRW 1),破(DRW 2),破镜(DRW 3)和直(DRW 4),纬纱密度为14和25 pick.cm-1。制作并测试了环氧复合材料增强3DAI机织织物在不同牵伸图案和纬密度组合下的样品。结果表明,采用drw4和25挑片的机织物复合材料试样的最大拉伸应力和应变均得到了记录。在113 MPa下cm-1和11%。研究表明,不同纬密度和拉拔方案设置对3DAI机织复合材料的拉伸强度性能有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Uniaxial Tensile Stress-Strain Response of 3D Angle Interlock Woven Fabric Composite using Weft Density and Draw-In Plan Variables
Currently, 2D woven composites are extensively incorporated into a variety of technical automotive body parts and protective body armor owing to their excellent fabric strength performance. However, there is still a lack of attempts to utilize 3D woven fabrics for the same technical application. Hence, it is vital to examine the fundamental tensile strength of woven fabric composite materials when determining their suitability for end-use applications. This study aimed to investigate the novel effects of two parameters on the uniaxial tensile strength of a high-tenacity polyester three-layer 3D angle interlock (3DAI) woven fabric composite, namely, weave drafting draw-in insertion and weave density. Four different drafting patterns were considered: pointed (DRW 1), broken (DRW 2), broken mirror (DRW 3), and straight (DRW 4), for weft density at 14 and 25 pick.cm-1. Samples of the 3DAI woven fabric reinforced with epoxy composite at different drafting patterns and weft density combinations were produced and tested. Consequently, the maximum tensile stress and strain were recorded in the woven fabric composite sample with DRW 4 and 25 pick.cm-1 at 113 MPa and 11%, respectively. The study shows that different weft densities and draw-in plan settings play a significant role in the tensile strength performance of the 3DAI woven composite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信