采用喷雾干燥技术对甘蔗粉末的吸附热力学进行了研究

Q3 Pharmacology, Toxicology and Pharmaceutics
Vitae Pub Date : 2014-12-03 DOI:10.17533/udea.vitae.15462
E. Largo-Avila, Misael Cortés Rodríguez, H. C. Ciro Velásquez
{"title":"采用喷雾干燥技术对甘蔗粉末的吸附热力学进行了研究","authors":"E. Largo-Avila, Misael Cortés Rodríguez, H. C. Ciro Velásquez","doi":"10.17533/udea.vitae.15462","DOIUrl":null,"url":null,"abstract":"Background: Sugarcane is one of the world’s largest crop. It grows in the tropical and subtropical regions, and its harvest provides 80% of the world’s sugar. In Latin America unrefined cane sugar is widely available and much less expensive than refined sugar. Sugarcane is a crop of great interest in Colombia due to the economic impact on the rural population and its application as sweetener agent. The poder of sugarcane (Saccharum officinarum L.) is widely used as a raw material in a wide range of industries such as foods, pharmaceutical, cosmetic and chemical. Objectives: The aim of the research work was the evaluation of the adsorption thermodynamics of sugarcane powder obtained by spray drying technology. Methods: The adsorption isotherms of sugarcane powder were evaluated at temperatures of 4 ± 0.1, 20 ± 0.2 and 30 ± 0.3 °C and its thermodynamic properties such as Gibbs free energy (G), differential heat of adsorption (ΔH) and differential entropy (ΔS) were calculated as a function of moisture content. Experimental data of adsorption isotherms were fitted to the GAB (Guggenheim – Andersen - de Boer), BET (Brunauer – Emmett - Teller), Henderson, Caurie, Smith, Hasley, Peleg, and Oswin models. Results: The results showed a type-II sigmoidal behavior, with temperature having a statistically significant effect. The GAB equation showed a better fit to the experimental data modeling (0.11≤aw≤0.87) although all models showed validity and goodness of fit to the experimental data. The net isosteric heat increased to a maximum value (57 kJ mol-1) and then decreased with the increase in moisture content. Conclusions: The sugarcane powder with maltodextrin, obtained by spray drying got low adsorption thermodynamic stability, as it required very low energy to occur this phenomenon, being obtained the maximum net isosteric heat when moisture content of 4.7% (d.b). This value is within the range of the monolayer moisture content found in the GAB and BET models.","PeriodicalId":51213,"journal":{"name":"Vitae","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"adsorption thermodynamics of sugarcane (Saccharum officinarum L.) powder obtained by spray drying technology\",\"authors\":\"E. Largo-Avila, Misael Cortés Rodríguez, H. C. Ciro Velásquez\",\"doi\":\"10.17533/udea.vitae.15462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Sugarcane is one of the world’s largest crop. It grows in the tropical and subtropical regions, and its harvest provides 80% of the world’s sugar. In Latin America unrefined cane sugar is widely available and much less expensive than refined sugar. Sugarcane is a crop of great interest in Colombia due to the economic impact on the rural population and its application as sweetener agent. The poder of sugarcane (Saccharum officinarum L.) is widely used as a raw material in a wide range of industries such as foods, pharmaceutical, cosmetic and chemical. Objectives: The aim of the research work was the evaluation of the adsorption thermodynamics of sugarcane powder obtained by spray drying technology. Methods: The adsorption isotherms of sugarcane powder were evaluated at temperatures of 4 ± 0.1, 20 ± 0.2 and 30 ± 0.3 °C and its thermodynamic properties such as Gibbs free energy (G), differential heat of adsorption (ΔH) and differential entropy (ΔS) were calculated as a function of moisture content. Experimental data of adsorption isotherms were fitted to the GAB (Guggenheim – Andersen - de Boer), BET (Brunauer – Emmett - Teller), Henderson, Caurie, Smith, Hasley, Peleg, and Oswin models. Results: The results showed a type-II sigmoidal behavior, with temperature having a statistically significant effect. The GAB equation showed a better fit to the experimental data modeling (0.11≤aw≤0.87) although all models showed validity and goodness of fit to the experimental data. The net isosteric heat increased to a maximum value (57 kJ mol-1) and then decreased with the increase in moisture content. Conclusions: The sugarcane powder with maltodextrin, obtained by spray drying got low adsorption thermodynamic stability, as it required very low energy to occur this phenomenon, being obtained the maximum net isosteric heat when moisture content of 4.7% (d.b). This value is within the range of the monolayer moisture content found in the GAB and BET models.\",\"PeriodicalId\":51213,\"journal\":{\"name\":\"Vitae\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vitae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17533/udea.vitae.15462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vitae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17533/udea.vitae.15462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 14

摘要

背景:甘蔗是世界上最大的作物之一。它生长在热带和亚热带地区,其收获提供了世界上80%的糖。在拉丁美洲,未经精制的蔗糖随处可见,而且比精制糖便宜得多。由于对农村人口的经济影响及其作为甜味剂的应用,甘蔗是哥伦比亚非常感兴趣的作物。甘蔗粉(Saccharum officinarum L.)作为原料广泛应用于食品、制药、化妆品、化工等行业。目的:对喷雾干燥甘蔗粉的吸附热力学进行评价。方法:测定甘蔗粉在4±0.1、20±0.2和30±0.3℃温度下的吸附等温线,计算其热力学性质如吉布斯自由能(G)、吸附微分热(ΔH)和微分熵(ΔS)随水分含量的变化。吸附等温线的实验数据拟合到GAB (Guggenheim - Andersen - de Boer)、BET (Brunauer - Emmett - Teller)、Henderson、Caurie、Smith、Hasley、Peleg和Oswin模型。结果:结果显示为ii型s型行为,温度有统计学上显著的影响。GAB方程与实验数据模型的拟合效果较好(0.11≤aw≤0.87),所有模型均表现出对实验数据的有效性和拟合优度。随着含水率的增加,净等等热增大到最大值(57 kJ mol-1),然后减小。结论:喷雾干燥得到的麦芽糖糊精甘蔗粉吸附热力学稳定性较低,因为发生这种现象所需的能量很低,当水分含量为4.7% (d.b)时获得的净等等热最大。该值在GAB和BET模型中发现的单层含水率范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
adsorption thermodynamics of sugarcane (Saccharum officinarum L.) powder obtained by spray drying technology
Background: Sugarcane is one of the world’s largest crop. It grows in the tropical and subtropical regions, and its harvest provides 80% of the world’s sugar. In Latin America unrefined cane sugar is widely available and much less expensive than refined sugar. Sugarcane is a crop of great interest in Colombia due to the economic impact on the rural population and its application as sweetener agent. The poder of sugarcane (Saccharum officinarum L.) is widely used as a raw material in a wide range of industries such as foods, pharmaceutical, cosmetic and chemical. Objectives: The aim of the research work was the evaluation of the adsorption thermodynamics of sugarcane powder obtained by spray drying technology. Methods: The adsorption isotherms of sugarcane powder were evaluated at temperatures of 4 ± 0.1, 20 ± 0.2 and 30 ± 0.3 °C and its thermodynamic properties such as Gibbs free energy (G), differential heat of adsorption (ΔH) and differential entropy (ΔS) were calculated as a function of moisture content. Experimental data of adsorption isotherms were fitted to the GAB (Guggenheim – Andersen - de Boer), BET (Brunauer – Emmett - Teller), Henderson, Caurie, Smith, Hasley, Peleg, and Oswin models. Results: The results showed a type-II sigmoidal behavior, with temperature having a statistically significant effect. The GAB equation showed a better fit to the experimental data modeling (0.11≤aw≤0.87) although all models showed validity and goodness of fit to the experimental data. The net isosteric heat increased to a maximum value (57 kJ mol-1) and then decreased with the increase in moisture content. Conclusions: The sugarcane powder with maltodextrin, obtained by spray drying got low adsorption thermodynamic stability, as it required very low energy to occur this phenomenon, being obtained the maximum net isosteric heat when moisture content of 4.7% (d.b). This value is within the range of the monolayer moisture content found in the GAB and BET models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vitae
Vitae PHARMACOLOGY & PHARMACY-
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The journal VITAE is the four-monthly official publication of the School of Pharmaceutical and Food Sciences, and its mission is the diffusion of the scientific and investigative knowledge in the various fields of pharmaceutical and food research, and their related industries. The Journal VITAE is an open-access journal that publishes original and unpublished manuscripts, which are selected by the Editorial Board and then peer-reviewed. The editorial pages express the opinion of the Faculty regarding the various topics of interest. The judgments, opinions, and points of view expressed in the published articles are the responsibility of their authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信