{"title":"挖掘机挖掘作业综合跟踪控制算法的开发","authors":"N. Reginald, J. Seo, Abdullah Rasul","doi":"10.23919/ICCAS50221.2020.9268434","DOIUrl":null,"url":null,"abstract":"The Excavator is one of the key equipment utilized for earthmoving tasks at construction sites. This paper aims to provide an integrative tracking control strategy comprising of position, contour, and force tracking controls for excavation tasks. A non-linear proportional-integral controller was applied for position control of hydraulic actuators and the contour control strategy was added to create an optimal path of the bucket tip minimizing contour errors. The force control was finally considered to compensate for the ground resistive force. A multiphysics simulation model was developed for an evaluation of the designed controller’s performance through co-simulation. Experimental results obtained from a test platform show that the developed control algorithms provide good tracking performance for soil digging.","PeriodicalId":6732,"journal":{"name":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","volume":"88 24 1","pages":"195-200"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of an Integrated Tracking Control Algorithm for Digging Operations of an Excavator\",\"authors\":\"N. Reginald, J. Seo, Abdullah Rasul\",\"doi\":\"10.23919/ICCAS50221.2020.9268434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Excavator is one of the key equipment utilized for earthmoving tasks at construction sites. This paper aims to provide an integrative tracking control strategy comprising of position, contour, and force tracking controls for excavation tasks. A non-linear proportional-integral controller was applied for position control of hydraulic actuators and the contour control strategy was added to create an optimal path of the bucket tip minimizing contour errors. The force control was finally considered to compensate for the ground resistive force. A multiphysics simulation model was developed for an evaluation of the designed controller’s performance through co-simulation. Experimental results obtained from a test platform show that the developed control algorithms provide good tracking performance for soil digging.\",\"PeriodicalId\":6732,\"journal\":{\"name\":\"2020 20th International Conference on Control, Automation and Systems (ICCAS)\",\"volume\":\"88 24 1\",\"pages\":\"195-200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 20th International Conference on Control, Automation and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICCAS50221.2020.9268434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS50221.2020.9268434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of an Integrated Tracking Control Algorithm for Digging Operations of an Excavator
The Excavator is one of the key equipment utilized for earthmoving tasks at construction sites. This paper aims to provide an integrative tracking control strategy comprising of position, contour, and force tracking controls for excavation tasks. A non-linear proportional-integral controller was applied for position control of hydraulic actuators and the contour control strategy was added to create an optimal path of the bucket tip minimizing contour errors. The force control was finally considered to compensate for the ground resistive force. A multiphysics simulation model was developed for an evaluation of the designed controller’s performance through co-simulation. Experimental results obtained from a test platform show that the developed control algorithms provide good tracking performance for soil digging.