Zhiduo Liu, Aaron Severance, Satnam Singh, G. Lemieux
{"title":"加速编译器的威尼斯矢量处理器","authors":"Zhiduo Liu, Aaron Severance, Satnam Singh, G. Lemieux","doi":"10.1145/2145694.2145732","DOIUrl":null,"url":null,"abstract":"This paper describes the compiler design for VENICE, a new soft vector processor (SVP). The compiler is a new back-end target for Microsoft Accelerator, a high-level data parallel library for C++ and C#. This allows us to automatically compile high-level programs into VENICE assembly code, thus avoiding the process of writing assembly code used by previous SVPs. Experimental results show the compiler can generate scalable parallel code with execution times that are comparable to hand-written VENICE assembly code. On data-parallel applications, VENICE at 100MHz on an Altera DE3 platform runs at speeds comparable to one core of a 3.5GHz Intel Xeon W3690 processor, beating it in performance on four of six benchmarks by up to 3.2x.","PeriodicalId":87257,"journal":{"name":"FPGA. ACM International Symposium on Field-Programmable Gate Arrays","volume":"79 1","pages":"229-232"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Accelerator compiler for the VENICE vector processor\",\"authors\":\"Zhiduo Liu, Aaron Severance, Satnam Singh, G. Lemieux\",\"doi\":\"10.1145/2145694.2145732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the compiler design for VENICE, a new soft vector processor (SVP). The compiler is a new back-end target for Microsoft Accelerator, a high-level data parallel library for C++ and C#. This allows us to automatically compile high-level programs into VENICE assembly code, thus avoiding the process of writing assembly code used by previous SVPs. Experimental results show the compiler can generate scalable parallel code with execution times that are comparable to hand-written VENICE assembly code. On data-parallel applications, VENICE at 100MHz on an Altera DE3 platform runs at speeds comparable to one core of a 3.5GHz Intel Xeon W3690 processor, beating it in performance on four of six benchmarks by up to 3.2x.\",\"PeriodicalId\":87257,\"journal\":{\"name\":\"FPGA. ACM International Symposium on Field-Programmable Gate Arrays\",\"volume\":\"79 1\",\"pages\":\"229-232\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FPGA. ACM International Symposium on Field-Programmable Gate Arrays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2145694.2145732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FPGA. ACM International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2145694.2145732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accelerator compiler for the VENICE vector processor
This paper describes the compiler design for VENICE, a new soft vector processor (SVP). The compiler is a new back-end target for Microsoft Accelerator, a high-level data parallel library for C++ and C#. This allows us to automatically compile high-level programs into VENICE assembly code, thus avoiding the process of writing assembly code used by previous SVPs. Experimental results show the compiler can generate scalable parallel code with execution times that are comparable to hand-written VENICE assembly code. On data-parallel applications, VENICE at 100MHz on an Altera DE3 platform runs at speeds comparable to one core of a 3.5GHz Intel Xeon W3690 processor, beating it in performance on four of six benchmarks by up to 3.2x.