一类幂零辛交替代数的界

Layla Sorkatti
{"title":"一类幂零辛交替代数的界","authors":"Layla Sorkatti","doi":"10.1142/s0218196722500035","DOIUrl":null,"url":null,"abstract":"We continue developing the theory of nilpotent symplectic alternating algebras. The algebras of upper bound nilpotent class, that we call maximal algebras, have been introduced and well studied. In this paper, we continue with the external case problem of algebras of minimal nilpotent class. We show the existence of a subclass of algebras over a field [Formula: see text] that is of certain lower bound class that depends on the dimension only. This suggests a minimal bound for the class of nilpotent algebras of dimension [Formula: see text] of rank [Formula: see text] over any field.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"88 15 1","pages":"67-84"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A bound for the class of nilpotent symplectic alternating algebras\",\"authors\":\"Layla Sorkatti\",\"doi\":\"10.1142/s0218196722500035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We continue developing the theory of nilpotent symplectic alternating algebras. The algebras of upper bound nilpotent class, that we call maximal algebras, have been introduced and well studied. In this paper, we continue with the external case problem of algebras of minimal nilpotent class. We show the existence of a subclass of algebras over a field [Formula: see text] that is of certain lower bound class that depends on the dimension only. This suggests a minimal bound for the class of nilpotent algebras of dimension [Formula: see text] of rank [Formula: see text] over any field.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"88 15 1\",\"pages\":\"67-84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196722500035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196722500035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们继续发展幂零辛交替代数理论。上界幂零类的代数,我们称之为极大代数,已经被引入并得到了很好的研究。在本文中,我们继续讨论极小幂零代数的外部情形问题。我们证明了域上代数的一个子类的存在性[公式:见文本],它是一个仅依赖于维数的下界类。这提出了维数为[公式:见文],秩为[公式:见文]的幂零代数类在任何域上的最小界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A bound for the class of nilpotent symplectic alternating algebras
We continue developing the theory of nilpotent symplectic alternating algebras. The algebras of upper bound nilpotent class, that we call maximal algebras, have been introduced and well studied. In this paper, we continue with the external case problem of algebras of minimal nilpotent class. We show the existence of a subclass of algebras over a field [Formula: see text] that is of certain lower bound class that depends on the dimension only. This suggests a minimal bound for the class of nilpotent algebras of dimension [Formula: see text] of rank [Formula: see text] over any field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信