{"title":"红蓝点分离的参数化复杂度","authors":"Édouard Bonnet, P. Giannopoulos, M. Lampis","doi":"10.4230/LIPIcs.IPEC.2017.8","DOIUrl":null,"url":null,"abstract":"We study the following geometric separation problem: \nGiven a set $R$ of red points and a set $B$ of blue points in the plane, find a minimum-size set of lines that separate $R$ from $B$. We show that, in its full generality, parameterized by the number of lines $k$ in the solution, the problem is unlikely to be solvable significantly faster than the brute-force $n^{O(k)}$-time algorithm, where $n$ is the total number of points. Indeed, we show that an algorithm running in time $f(k)n^{o(k/ \\log k)}$, for any computable function $f$, would disprove ETH. Our reduction crucially relies on selecting lines from a set with a large number of different slopes (i.e., this number is not a function of $k$). Conjecturing that the problem variant where the lines are required to be axis-parallel is FPT in the number of lines, we show the following preliminary result. Separating $R$ from $B$ with a minimum-size set of axis-parallel lines is FPT in the size of either set, and can be solved in time $O^*(9^{|B|})$ (assuming that $B$ is the smallest set).","PeriodicalId":54969,"journal":{"name":"International Journal of Computational Geometry & Applications","volume":"78 1","pages":"181-206"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On the Parameterized Complexity of Red-Blue Points Separation\",\"authors\":\"Édouard Bonnet, P. Giannopoulos, M. Lampis\",\"doi\":\"10.4230/LIPIcs.IPEC.2017.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the following geometric separation problem: \\nGiven a set $R$ of red points and a set $B$ of blue points in the plane, find a minimum-size set of lines that separate $R$ from $B$. We show that, in its full generality, parameterized by the number of lines $k$ in the solution, the problem is unlikely to be solvable significantly faster than the brute-force $n^{O(k)}$-time algorithm, where $n$ is the total number of points. Indeed, we show that an algorithm running in time $f(k)n^{o(k/ \\\\log k)}$, for any computable function $f$, would disprove ETH. Our reduction crucially relies on selecting lines from a set with a large number of different slopes (i.e., this number is not a function of $k$). Conjecturing that the problem variant where the lines are required to be axis-parallel is FPT in the number of lines, we show the following preliminary result. Separating $R$ from $B$ with a minimum-size set of axis-parallel lines is FPT in the size of either set, and can be solved in time $O^*(9^{|B|})$ (assuming that $B$ is the smallest set).\",\"PeriodicalId\":54969,\"journal\":{\"name\":\"International Journal of Computational Geometry & Applications\",\"volume\":\"78 1\",\"pages\":\"181-206\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Geometry & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.IPEC.2017.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.IPEC.2017.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
On the Parameterized Complexity of Red-Blue Points Separation
We study the following geometric separation problem:
Given a set $R$ of red points and a set $B$ of blue points in the plane, find a minimum-size set of lines that separate $R$ from $B$. We show that, in its full generality, parameterized by the number of lines $k$ in the solution, the problem is unlikely to be solvable significantly faster than the brute-force $n^{O(k)}$-time algorithm, where $n$ is the total number of points. Indeed, we show that an algorithm running in time $f(k)n^{o(k/ \log k)}$, for any computable function $f$, would disprove ETH. Our reduction crucially relies on selecting lines from a set with a large number of different slopes (i.e., this number is not a function of $k$). Conjecturing that the problem variant where the lines are required to be axis-parallel is FPT in the number of lines, we show the following preliminary result. Separating $R$ from $B$ with a minimum-size set of axis-parallel lines is FPT in the size of either set, and can be solved in time $O^*(9^{|B|})$ (assuming that $B$ is the smallest set).
期刊介绍:
The International Journal of Computational Geometry & Applications (IJCGA) is a quarterly journal devoted to the field of computational geometry within the framework of design and analysis of algorithms.
Emphasis is placed on the computational aspects of geometric problems that arise in various fields of science and engineering including computer-aided geometry design (CAGD), computer graphics, constructive solid geometry (CSG), operations research, pattern recognition, robotics, solid modelling, VLSI routing/layout, and others. Research contributions ranging from theoretical results in algorithm design — sequential or parallel, probabilistic or randomized algorithms — to applications in the above-mentioned areas are welcome. Research findings or experiences in the implementations of geometric algorithms, such as numerical stability, and papers with a geometric flavour related to algorithms or the application areas of computational geometry are also welcome.