{"title":"由奇异摄动拉盖尔权值生成的大汉克尔矩阵的最小特征值","authors":"Mengkun Zhu, Yang Chen, Chuanzhong Li","doi":"10.1063/1.5140079","DOIUrl":null,"url":null,"abstract":"An asymptotic expression of the orthonormal polynomials $\\mathcal{P}_{N}(z)$ as $N\\rightarrow\\infty$, associated with the singularly perturbed Laguerre weight $w_{\\alpha}(x;t)=x^{\\alpha}{\\rm e}^{-x-\\frac{t}{x}},~x\\in[0,\\infty),~\\alpha>-1,~t\\geq0$ is derived. Based on this, we establish the asymptotic behavior of the smallest eigenvalue, $\\lambda_{N}$, of the Hankel matrix generated by the weight $w_{\\alpha}(x;t)$.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The smallest eigenvalue of large Hankel matrices generated by a singularly perturbed Laguerre weight\",\"authors\":\"Mengkun Zhu, Yang Chen, Chuanzhong Li\",\"doi\":\"10.1063/1.5140079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An asymptotic expression of the orthonormal polynomials $\\\\mathcal{P}_{N}(z)$ as $N\\\\rightarrow\\\\infty$, associated with the singularly perturbed Laguerre weight $w_{\\\\alpha}(x;t)=x^{\\\\alpha}{\\\\rm e}^{-x-\\\\frac{t}{x}},~x\\\\in[0,\\\\infty),~\\\\alpha>-1,~t\\\\geq0$ is derived. Based on this, we establish the asymptotic behavior of the smallest eigenvalue, $\\\\lambda_{N}$, of the Hankel matrix generated by the weight $w_{\\\\alpha}(x;t)$.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5140079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5140079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The smallest eigenvalue of large Hankel matrices generated by a singularly perturbed Laguerre weight
An asymptotic expression of the orthonormal polynomials $\mathcal{P}_{N}(z)$ as $N\rightarrow\infty$, associated with the singularly perturbed Laguerre weight $w_{\alpha}(x;t)=x^{\alpha}{\rm e}^{-x-\frac{t}{x}},~x\in[0,\infty),~\alpha>-1,~t\geq0$ is derived. Based on this, we establish the asymptotic behavior of the smallest eigenvalue, $\lambda_{N}$, of the Hankel matrix generated by the weight $w_{\alpha}(x;t)$.