由奇异摄动拉盖尔权值生成的大汉克尔矩阵的最小特征值

Mengkun Zhu, Yang Chen, Chuanzhong Li
{"title":"由奇异摄动拉盖尔权值生成的大汉克尔矩阵的最小特征值","authors":"Mengkun Zhu, Yang Chen, Chuanzhong Li","doi":"10.1063/1.5140079","DOIUrl":null,"url":null,"abstract":"An asymptotic expression of the orthonormal polynomials $\\mathcal{P}_{N}(z)$ as $N\\rightarrow\\infty$, associated with the singularly perturbed Laguerre weight $w_{\\alpha}(x;t)=x^{\\alpha}{\\rm e}^{-x-\\frac{t}{x}},~x\\in[0,\\infty),~\\alpha>-1,~t\\geq0$ is derived. Based on this, we establish the asymptotic behavior of the smallest eigenvalue, $\\lambda_{N}$, of the Hankel matrix generated by the weight $w_{\\alpha}(x;t)$.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":"30 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The smallest eigenvalue of large Hankel matrices generated by a singularly perturbed Laguerre weight\",\"authors\":\"Mengkun Zhu, Yang Chen, Chuanzhong Li\",\"doi\":\"10.1063/1.5140079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An asymptotic expression of the orthonormal polynomials $\\\\mathcal{P}_{N}(z)$ as $N\\\\rightarrow\\\\infty$, associated with the singularly perturbed Laguerre weight $w_{\\\\alpha}(x;t)=x^{\\\\alpha}{\\\\rm e}^{-x-\\\\frac{t}{x}},~x\\\\in[0,\\\\infty),~\\\\alpha>-1,~t\\\\geq0$ is derived. Based on this, we establish the asymptotic behavior of the smallest eigenvalue, $\\\\lambda_{N}$, of the Hankel matrix generated by the weight $w_{\\\\alpha}(x;t)$.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":\"30 1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5140079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5140079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

导出了与奇异摄动Laguerre权$w_{\alpha}(x;t)=x^{\alpha}{\rm e}^{-x-\frac{t}{x}},~x\in[0,\infty),~\alpha>-1,~t\geq0$相关的标准正交多项式$\mathcal{P}_{N}(z)$的渐近表达式$N\rightarrow\infty$。在此基础上,我们建立了权值$w_{\alpha}(x;t)$生成的Hankel矩阵的最小特征值$\lambda_{N}$的渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The smallest eigenvalue of large Hankel matrices generated by a singularly perturbed Laguerre weight
An asymptotic expression of the orthonormal polynomials $\mathcal{P}_{N}(z)$ as $N\rightarrow\infty$, associated with the singularly perturbed Laguerre weight $w_{\alpha}(x;t)=x^{\alpha}{\rm e}^{-x-\frac{t}{x}},~x\in[0,\infty),~\alpha>-1,~t\geq0$ is derived. Based on this, we establish the asymptotic behavior of the smallest eigenvalue, $\lambda_{N}$, of the Hankel matrix generated by the weight $w_{\alpha}(x;t)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信