通过极运动配置文件检测视频中的手语内容

Virendra Karappa, C. D. D. Monteiro, F. Shipman, R. Gutierrez-Osuna
{"title":"通过极运动配置文件检测视频中的手语内容","authors":"Virendra Karappa, C. D. D. Monteiro, F. Shipman, R. Gutierrez-Osuna","doi":"10.1109/ICASSP.2014.6853805","DOIUrl":null,"url":null,"abstract":"Locating sign language (SL) videos on video sharing sites (e.g., YouTube) is challenging because search engines generally do not use the visual content of videos for indexing. Instead, indexing is done solely based on textual content (e.g., title, description, metadata). As a result, untagged SL videos do not appear in the search results. In this paper, we present and evaluate a classification approach to detect SL videos based on their visual content. The approach uses an ensemble of Haar-based face detectors to define regions of interest (ROI), and a background model to segment movements in the ROI. The two-dimensional (2D) distribution of foreground pixels in the ROI is then reduced to two 1D polar motion profiles by means of a polar-coordinate transformation, and then classified by means of an SVM. When evaluated on a dataset of user-contributed YouTube videos, the approach achieves 81% precision and 94% recall.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"78 1","pages":"1290-1294"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Detection of sign-language content in video through polar motion profiles\",\"authors\":\"Virendra Karappa, C. D. D. Monteiro, F. Shipman, R. Gutierrez-Osuna\",\"doi\":\"10.1109/ICASSP.2014.6853805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Locating sign language (SL) videos on video sharing sites (e.g., YouTube) is challenging because search engines generally do not use the visual content of videos for indexing. Instead, indexing is done solely based on textual content (e.g., title, description, metadata). As a result, untagged SL videos do not appear in the search results. In this paper, we present and evaluate a classification approach to detect SL videos based on their visual content. The approach uses an ensemble of Haar-based face detectors to define regions of interest (ROI), and a background model to segment movements in the ROI. The two-dimensional (2D) distribution of foreground pixels in the ROI is then reduced to two 1D polar motion profiles by means of a polar-coordinate transformation, and then classified by means of an SVM. When evaluated on a dataset of user-contributed YouTube videos, the approach achieves 81% precision and 94% recall.\",\"PeriodicalId\":6545,\"journal\":{\"name\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"78 1\",\"pages\":\"1290-1294\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2014.6853805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6853805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在视频分享网站(例如YouTube)上定位手语(SL)视频具有挑战性,因为搜索引擎通常不使用视频的视觉内容进行索引。相反,索引是完全基于文本内容(例如,标题、描述、元数据)完成的。因此,未标记的SL视频不会出现在搜索结果中。在本文中,我们提出并评估了一种基于视觉内容检测SL视频的分类方法。该方法使用基于haar的人脸检测器集合来定义感兴趣区域(ROI),并使用背景模型来分割感兴趣区域中的运动。然后通过极坐标变换将前景像素在感兴趣区域内的二维(2D)分布简化为两个一维极运动轮廓,然后通过支持向量机进行分类。当对用户贡献的YouTube视频数据集进行评估时,该方法达到了81%的准确率和94%的召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of sign-language content in video through polar motion profiles
Locating sign language (SL) videos on video sharing sites (e.g., YouTube) is challenging because search engines generally do not use the visual content of videos for indexing. Instead, indexing is done solely based on textual content (e.g., title, description, metadata). As a result, untagged SL videos do not appear in the search results. In this paper, we present and evaluate a classification approach to detect SL videos based on their visual content. The approach uses an ensemble of Haar-based face detectors to define regions of interest (ROI), and a background model to segment movements in the ROI. The two-dimensional (2D) distribution of foreground pixels in the ROI is then reduced to two 1D polar motion profiles by means of a polar-coordinate transformation, and then classified by means of an SVM. When evaluated on a dataset of user-contributed YouTube videos, the approach achieves 81% precision and 94% recall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信