用控制数表示图的Grundy色数的界

Pub Date : 2022-12-08 DOI:10.36045/j.bbms.211019
Abbass Khaleghi, M. Zaker
{"title":"用控制数表示图的Grundy色数的界","authors":"Abbass Khaleghi, M. Zaker","doi":"10.36045/j.bbms.211019","DOIUrl":null,"url":null,"abstract":"For any graph $G$, the Grundy (or First-Fit) chromatic number of $G$, denoted by $\\Gamma(G)$ (also $\\chi_{_{\\sf FF}}(G)$), is defined as the maximum number of colors used by the First-Fit (greedy) coloring of the vertices of $G$. Determining the Grundy number is $NP$-complete, and obtaining bounds for $\\Gamma(G)$ in terms of the known graph parameters is an active research topic. By a star partition of $G$ we mean any partition of $V(G)$ into say $V_1, \\ldots, V_k$ such that each $G[V_i]$ contains a vertex adjacent to any other vertex in $V_i$. In this paper using the star partition of graphs we obtain the first upper bounds for the Grundy number in terms of the domination number. We also prove some bounds in terms of the domination number and girth of graphs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds for the Grundy chromatic number of graphs in terms of domination number\",\"authors\":\"Abbass Khaleghi, M. Zaker\",\"doi\":\"10.36045/j.bbms.211019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any graph $G$, the Grundy (or First-Fit) chromatic number of $G$, denoted by $\\\\Gamma(G)$ (also $\\\\chi_{_{\\\\sf FF}}(G)$), is defined as the maximum number of colors used by the First-Fit (greedy) coloring of the vertices of $G$. Determining the Grundy number is $NP$-complete, and obtaining bounds for $\\\\Gamma(G)$ in terms of the known graph parameters is an active research topic. By a star partition of $G$ we mean any partition of $V(G)$ into say $V_1, \\\\ldots, V_k$ such that each $G[V_i]$ contains a vertex adjacent to any other vertex in $V_i$. In this paper using the star partition of graphs we obtain the first upper bounds for the Grundy number in terms of the domination number. We also prove some bounds in terms of the domination number and girth of graphs.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.36045/j.bbms.211019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.36045/j.bbms.211019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于任意图$G$, $G$的Grundy(或First-Fit)色数,用$\Gamma(G)$(也叫$\chi_{_{\sf FF}}(G)$)表示,定义为$G$顶点的First-Fit(贪婪)着色所使用的最大颜色数。确定Grundy数是$NP$ -完整的,根据已知的图参数获得$\Gamma(G)$的界是一个活跃的研究课题。通过对$G$的星形划分,我们指的是将$V(G)$划分为$V_1, \ldots, V_k$,使得每个$G[V_i]$包含一个与$V_i$中任何其他顶点相邻的顶点。本文利用图的星形划分,得到了Grundy数关于支配数的第一上界。我们还证明了图的支配数和周长的界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Bounds for the Grundy chromatic number of graphs in terms of domination number
For any graph $G$, the Grundy (or First-Fit) chromatic number of $G$, denoted by $\Gamma(G)$ (also $\chi_{_{\sf FF}}(G)$), is defined as the maximum number of colors used by the First-Fit (greedy) coloring of the vertices of $G$. Determining the Grundy number is $NP$-complete, and obtaining bounds for $\Gamma(G)$ in terms of the known graph parameters is an active research topic. By a star partition of $G$ we mean any partition of $V(G)$ into say $V_1, \ldots, V_k$ such that each $G[V_i]$ contains a vertex adjacent to any other vertex in $V_i$. In this paper using the star partition of graphs we obtain the first upper bounds for the Grundy number in terms of the domination number. We also prove some bounds in terms of the domination number and girth of graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信