{"title":"兰州树与单环图索引","authors":"Qiyue Li, Hanyuan Deng, Zikai Tang","doi":"10.47443/ejm.2023.008","DOIUrl":null,"url":null,"abstract":"Let G be a simple graph with vertex set V ( G ) . The Lanzhou index of G is defined as Lz ( G ) = (cid:80) u ∈ V ( G ) d G ( u ) d G ( u ) 2 , where d G ( u ) denotes the degree of the vertex u in G and G is the complement of G . In this paper, we establish an upper bound on the Lanzhou index for trees of order n with maximum degree ∆ . Additionally, we obtain the minimum and maximum values of the Lanzhou index for unicyclic graphs of order n . Moreover, we determine the Lanzhou index’s maximum value for chemical trees of order n .","PeriodicalId":29770,"journal":{"name":"International Electronic Journal of Mathematics Education","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lanzhou Index of Trees and Unicyclic Graphs\",\"authors\":\"Qiyue Li, Hanyuan Deng, Zikai Tang\",\"doi\":\"10.47443/ejm.2023.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a simple graph with vertex set V ( G ) . The Lanzhou index of G is defined as Lz ( G ) = (cid:80) u ∈ V ( G ) d G ( u ) d G ( u ) 2 , where d G ( u ) denotes the degree of the vertex u in G and G is the complement of G . In this paper, we establish an upper bound on the Lanzhou index for trees of order n with maximum degree ∆ . Additionally, we obtain the minimum and maximum values of the Lanzhou index for unicyclic graphs of order n . Moreover, we determine the Lanzhou index’s maximum value for chemical trees of order n .\",\"PeriodicalId\":29770,\"journal\":{\"name\":\"International Electronic Journal of Mathematics Education\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Mathematics Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/ejm.2023.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Mathematics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/ejm.2023.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 1
摘要
设G是一个顶点集V (G)的简单图。G的兰州指数定义为Lz (G) = (cid:80) u∈V (G) d G (u) d G (u) 2,其中dg (u)表示顶点u在G中的度数,G是G的补。本文建立了最大次为∆的n阶树的兰州指数的上界。此外,我们还得到了n阶单环图的兰州指数的最小值和最大值。此外,我们还确定了n阶化学树的兰州指数最大值。
Let G be a simple graph with vertex set V ( G ) . The Lanzhou index of G is defined as Lz ( G ) = (cid:80) u ∈ V ( G ) d G ( u ) d G ( u ) 2 , where d G ( u ) denotes the degree of the vertex u in G and G is the complement of G . In this paper, we establish an upper bound on the Lanzhou index for trees of order n with maximum degree ∆ . Additionally, we obtain the minimum and maximum values of the Lanzhou index for unicyclic graphs of order n . Moreover, we determine the Lanzhou index’s maximum value for chemical trees of order n .