构造一类优美一致树的几种方法

I. N. Suparta, I. D. M. A. Ariawan
{"title":"构造一类优美一致树的几种方法","authors":"I. N. Suparta, I. D. M. A. Ariawan","doi":"10.19184/ijc.2018.2.2.7","DOIUrl":null,"url":null,"abstract":"<p>A tree <span class=\"math\"><em>T</em>(<em>V</em>, <em>E</em>)</span> is <span><em>graceful</em></span> if there exists an injective function <span class=\"math\"><em>f</em></span> from the vertex set <span class=\"math\"><em>V</em>(<em>T</em>)</span> into the set <span class=\"math\">{0, 1, 2, ..., ∣<em>V</em>∣ − 1}</span> which induces a bijective function <span class=\"math\"><em>f</em>ʹ</span> from the edge set <span class=\"math\"><em>E</em>(<em>T</em>)</span> onto the set <span class=\"math\">{1, 2, ..., ∣<em>E</em>∣}</span>, with <span class=\"math\"><em>f</em>ʹ(<em>u</em><em>v</em>) = ∣<em>f</em>(<em>u</em>) − <em>f</em>(<em>v</em>)∣</span> for every edge <span class=\"math\">{<em>u</em>, <em>v</em>} ∈ <em>E</em></span>. Motivated by the conjecture of Alexander Rosa (see) saying that all trees are graceful, a lot of works have addressed gracefulness of some trees. In this paper we show that some uniform trees are graceful. This results will extend the list of graceful trees.</p>","PeriodicalId":13506,"journal":{"name":"Indonesian Journal of Combinatorics","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Some methods for constructing some classes of graceful uniform trees\",\"authors\":\"I. N. Suparta, I. D. M. A. Ariawan\",\"doi\":\"10.19184/ijc.2018.2.2.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A tree <span class=\\\"math\\\"><em>T</em>(<em>V</em>, <em>E</em>)</span> is <span><em>graceful</em></span> if there exists an injective function <span class=\\\"math\\\"><em>f</em></span> from the vertex set <span class=\\\"math\\\"><em>V</em>(<em>T</em>)</span> into the set <span class=\\\"math\\\">{0, 1, 2, ..., ∣<em>V</em>∣ − 1}</span> which induces a bijective function <span class=\\\"math\\\"><em>f</em>ʹ</span> from the edge set <span class=\\\"math\\\"><em>E</em>(<em>T</em>)</span> onto the set <span class=\\\"math\\\">{1, 2, ..., ∣<em>E</em>∣}</span>, with <span class=\\\"math\\\"><em>f</em>ʹ(<em>u</em><em>v</em>) = ∣<em>f</em>(<em>u</em>) − <em>f</em>(<em>v</em>)∣</span> for every edge <span class=\\\"math\\\">{<em>u</em>, <em>v</em>} ∈ <em>E</em></span>. Motivated by the conjecture of Alexander Rosa (see) saying that all trees are graceful, a lot of works have addressed gracefulness of some trees. In this paper we show that some uniform trees are graceful. This results will extend the list of graceful trees.</p>\",\"PeriodicalId\":13506,\"journal\":{\"name\":\"Indonesian Journal of Combinatorics\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19184/ijc.2018.2.2.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/ijc.2018.2.2.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

如果存在从顶点集V(T)到集合{0,1,2,…的单射函数f,那么树T(V, E)是优美的,∣V∣−1},它从边缘集E(T)导出一个双射函数f′到集合{1,2,…∣E∣},fʹ(紫外线)=∣(u)−f (v)为每条边∣{u, v}∈E。由于亚历山大·罗莎(Alexander Rosa)的猜想,所有的树都是优雅的,许多作品都解决了一些树的优雅问题。本文证明了一些均匀树是优美的。这个结果将扩展优雅树的列表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some methods for constructing some classes of graceful uniform trees

A tree T(V, E) is graceful if there exists an injective function f from the vertex set V(T) into the set {0, 1, 2, ..., ∣V∣ − 1} which induces a bijective function fʹ from the edge set E(T) onto the set {1, 2, ..., ∣E∣}, with fʹ(uv) = ∣f(u) − f(v)∣ for every edge {u, v} ∈ E. Motivated by the conjecture of Alexander Rosa (see) saying that all trees are graceful, a lot of works have addressed gracefulness of some trees. In this paper we show that some uniform trees are graceful. This results will extend the list of graceful trees.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信