{"title":"非紧黎曼流形上非齐次椭圆方程边值问题的可解性","authors":"A. Losev, E. Mazepa","doi":"10.15393/J3.ART.2018.5330","DOIUrl":null,"url":null,"abstract":"We study questions of existence and belonging to a given functional class of solutions of the inhomogeneous elliptic equations ∆u − c(x)u = g(x), where c(x) > 0, g(x) are Hölder fuctions on a noncompact Riemannian manifold M without boundary. In this work we develop an approach to evaluation of solutions to boundary-value problems for linear and quasilinear equations of the elliptic type on arbitrary noncompact Riemannian manifolds. Our technique is essentially based on an approach from the papers by E. A. Mazepa and S. A. Korol’kov connected with an introduction of equivalency classes of functions and representations. We investigate the relationship between the existence of solutions of this equation on M and outside some compact set B ⊂ M with the same growth \"at infinity\".","PeriodicalId":41813,"journal":{"name":"Problemy Analiza-Issues of Analysis","volume":"92 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On solvability of the boundary value problems for the inhomogeneous elliptic equations on noncompact Riemannian manifolds\",\"authors\":\"A. Losev, E. Mazepa\",\"doi\":\"10.15393/J3.ART.2018.5330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study questions of existence and belonging to a given functional class of solutions of the inhomogeneous elliptic equations ∆u − c(x)u = g(x), where c(x) > 0, g(x) are Hölder fuctions on a noncompact Riemannian manifold M without boundary. In this work we develop an approach to evaluation of solutions to boundary-value problems for linear and quasilinear equations of the elliptic type on arbitrary noncompact Riemannian manifolds. Our technique is essentially based on an approach from the papers by E. A. Mazepa and S. A. Korol’kov connected with an introduction of equivalency classes of functions and representations. We investigate the relationship between the existence of solutions of this equation on M and outside some compact set B ⊂ M with the same growth \\\"at infinity\\\".\",\"PeriodicalId\":41813,\"journal\":{\"name\":\"Problemy Analiza-Issues of Analysis\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Problemy Analiza-Issues of Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15393/J3.ART.2018.5330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problemy Analiza-Issues of Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15393/J3.ART.2018.5330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
研究了一类非齐次椭圆方程(∆u−c(x)u = g(x)解的存在性问题,其中c(x) > 0, g(x)是无界非紧黎曼流形M上的Hölder函数。本文提出了一种求任意非紧黎曼流形上椭圆型线性方程和拟线性方程边值问题解的方法。我们的技术本质上是基于E. A. Mazepa和S. A. Korol 'kov论文中的一种方法,该方法与函数和表示的等价类的介绍有关。我们研究了该方程在M上与具有相同增长“在无穷远处”的紧集B∧M外解的存在性之间的关系。
On solvability of the boundary value problems for the inhomogeneous elliptic equations on noncompact Riemannian manifolds
We study questions of existence and belonging to a given functional class of solutions of the inhomogeneous elliptic equations ∆u − c(x)u = g(x), where c(x) > 0, g(x) are Hölder fuctions on a noncompact Riemannian manifold M without boundary. In this work we develop an approach to evaluation of solutions to boundary-value problems for linear and quasilinear equations of the elliptic type on arbitrary noncompact Riemannian manifolds. Our technique is essentially based on an approach from the papers by E. A. Mazepa and S. A. Korol’kov connected with an introduction of equivalency classes of functions and representations. We investigate the relationship between the existence of solutions of this equation on M and outside some compact set B ⊂ M with the same growth "at infinity".