Diffω(S2)的Burnside问题

IF 2.3 1区 数学 Q1 MATHEMATICS
Sebastián Hurtado, Alejandro Kocsard, Federico Rodríguez-Hertz
{"title":"Diffω(S2)的Burnside问题","authors":"Sebastián Hurtado, Alejandro Kocsard, Federico Rodríguez-Hertz","doi":"10.1215/00127094-2020-0028","DOIUrl":null,"url":null,"abstract":"Let $S$ be a closed surface and $\\text{Diff}_{\\text{Vol}}(S)$ be the group of volume preserving diffeomorphisms of $S$. A finitely generated group $G$ is periodic of bounded exponent if there exists $k \\in \\mathbb{N}$ such that every element of $G$ has order at most $k$. We show that every periodic group of bounded exponent $G \\subset \\text{Diff}_{\\text{Vol}}(S)$ is a finite group.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":"4 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2020-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The Burnside problem for Diffω(S2)\",\"authors\":\"Sebastián Hurtado, Alejandro Kocsard, Federico Rodríguez-Hertz\",\"doi\":\"10.1215/00127094-2020-0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $S$ be a closed surface and $\\\\text{Diff}_{\\\\text{Vol}}(S)$ be the group of volume preserving diffeomorphisms of $S$. A finitely generated group $G$ is periodic of bounded exponent if there exists $k \\\\in \\\\mathbb{N}$ such that every element of $G$ has order at most $k$. We show that every periodic group of bounded exponent $G \\\\subset \\\\text{Diff}_{\\\\text{Vol}}(S)$ is a finite group.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2020-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2020-0028\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2020-0028","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Burnside problem for Diffω(S2)
Let $S$ be a closed surface and $\text{Diff}_{\text{Vol}}(S)$ be the group of volume preserving diffeomorphisms of $S$. A finitely generated group $G$ is periodic of bounded exponent if there exists $k \in \mathbb{N}$ such that every element of $G$ has order at most $k$. We show that every periodic group of bounded exponent $G \subset \text{Diff}_{\text{Vol}}(S)$ is a finite group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信