{"title":"Diffω(S2)的Burnside问题","authors":"Sebastián Hurtado, Alejandro Kocsard, Federico Rodríguez-Hertz","doi":"10.1215/00127094-2020-0028","DOIUrl":null,"url":null,"abstract":"Let $S$ be a closed surface and $\\text{Diff}_{\\text{Vol}}(S)$ be the group of volume preserving diffeomorphisms of $S$. A finitely generated group $G$ is periodic of bounded exponent if there exists $k \\in \\mathbb{N}$ such that every element of $G$ has order at most $k$. We show that every periodic group of bounded exponent $G \\subset \\text{Diff}_{\\text{Vol}}(S)$ is a finite group.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":"4 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2020-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The Burnside problem for Diffω(S2)\",\"authors\":\"Sebastián Hurtado, Alejandro Kocsard, Federico Rodríguez-Hertz\",\"doi\":\"10.1215/00127094-2020-0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $S$ be a closed surface and $\\\\text{Diff}_{\\\\text{Vol}}(S)$ be the group of volume preserving diffeomorphisms of $S$. A finitely generated group $G$ is periodic of bounded exponent if there exists $k \\\\in \\\\mathbb{N}$ such that every element of $G$ has order at most $k$. We show that every periodic group of bounded exponent $G \\\\subset \\\\text{Diff}_{\\\\text{Vol}}(S)$ is a finite group.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2020-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2020-0028\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2020-0028","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let $S$ be a closed surface and $\text{Diff}_{\text{Vol}}(S)$ be the group of volume preserving diffeomorphisms of $S$. A finitely generated group $G$ is periodic of bounded exponent if there exists $k \in \mathbb{N}$ such that every element of $G$ has order at most $k$. We show that every periodic group of bounded exponent $G \subset \text{Diff}_{\text{Vol}}(S)$ is a finite group.