模式图重写系统

A. Kissinger, Alex Merry, Matvey Soloviev
{"title":"模式图重写系统","authors":"A. Kissinger, Alex Merry, Matvey Soloviev","doi":"10.4204/EPTCS.143.5","DOIUrl":null,"url":null,"abstract":"String diagrams are a powerful tool for reasoning about physical processes, logic circuits, tensor networks, and many other compositional structures. Dixon, Duncan and Kissinger introduced string graphs, which are a combinatoric representations of string diagrams, amenable to automated reasoning about diagrammatic theories via graph rewrite systems. In this extended abstract, we show how the power of such rewrite systems can be greatly extended by introducing pattern graphs, which provide a means of expressing infinite families of rewrite rules where certain marked subgraphs, called !-boxes (\"bang boxes\"), on both sides of a rule can be copied any number of times or removed. After reviewing the string graph formalism, we show how string graphs can be extended to pattern graphs and how pattern graphs and pattern rewrite rules can be instantiated to concrete string graphs and rewrite rules. We then provide examples demonstrating the expressive power of pattern graphs and how they can be applied to study interacting algebraic structures that are central to categorical quantum mechanics.","PeriodicalId":88470,"journal":{"name":"Dialogues in cardiovascular medicine : DCM","volume":"78 1","pages":"54-66"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Pattern Graph Rewrite Systems\",\"authors\":\"A. Kissinger, Alex Merry, Matvey Soloviev\",\"doi\":\"10.4204/EPTCS.143.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"String diagrams are a powerful tool for reasoning about physical processes, logic circuits, tensor networks, and many other compositional structures. Dixon, Duncan and Kissinger introduced string graphs, which are a combinatoric representations of string diagrams, amenable to automated reasoning about diagrammatic theories via graph rewrite systems. In this extended abstract, we show how the power of such rewrite systems can be greatly extended by introducing pattern graphs, which provide a means of expressing infinite families of rewrite rules where certain marked subgraphs, called !-boxes (\\\"bang boxes\\\"), on both sides of a rule can be copied any number of times or removed. After reviewing the string graph formalism, we show how string graphs can be extended to pattern graphs and how pattern graphs and pattern rewrite rules can be instantiated to concrete string graphs and rewrite rules. We then provide examples demonstrating the expressive power of pattern graphs and how they can be applied to study interacting algebraic structures that are central to categorical quantum mechanics.\",\"PeriodicalId\":88470,\"journal\":{\"name\":\"Dialogues in cardiovascular medicine : DCM\",\"volume\":\"78 1\",\"pages\":\"54-66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dialogues in cardiovascular medicine : DCM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.143.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dialogues in cardiovascular medicine : DCM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.143.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

弦图是对物理过程、逻辑电路、张量网络和许多其他组合结构进行推理的强大工具。Dixon, Duncan和Kissinger引入了字符串图,它是字符串图的组合表示,可以通过图形重写系统对图表理论进行自动推理。在这个扩展的摘要中,我们展示了这种重写系统的能力如何通过引入模式图来极大地扩展,模式图提供了一种表达无限重写规则族的方法,其中规则两侧的某些标记子图,称为!盒(“bang box”),可以被复制任意次数或删除。在回顾了字符串图的形式化之后,我们展示了如何将字符串图扩展为模式图,以及如何将模式图和模式重写规则实例化为具体的字符串图和重写规则。然后,我们提供了一些例子来展示模式图的表达能力,以及如何将它们应用于研究相互作用的代数结构,这是范畴量子力学的核心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pattern Graph Rewrite Systems
String diagrams are a powerful tool for reasoning about physical processes, logic circuits, tensor networks, and many other compositional structures. Dixon, Duncan and Kissinger introduced string graphs, which are a combinatoric representations of string diagrams, amenable to automated reasoning about diagrammatic theories via graph rewrite systems. In this extended abstract, we show how the power of such rewrite systems can be greatly extended by introducing pattern graphs, which provide a means of expressing infinite families of rewrite rules where certain marked subgraphs, called !-boxes ("bang boxes"), on both sides of a rule can be copied any number of times or removed. After reviewing the string graph formalism, we show how string graphs can be extended to pattern graphs and how pattern graphs and pattern rewrite rules can be instantiated to concrete string graphs and rewrite rules. We then provide examples demonstrating the expressive power of pattern graphs and how they can be applied to study interacting algebraic structures that are central to categorical quantum mechanics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信