无限图中的流动

Jon Folkman, D.R. Fulkerson
{"title":"无限图中的流动","authors":"Jon Folkman,&nbsp;D.R. Fulkerson","doi":"10.1016/S0021-9800(70)80006-0","DOIUrl":null,"url":null,"abstract":"<div><p>A theorem is established that provides necessary and sufficient conditions in order that a locally finite bipartite graph have a subgraph whose valences lie in prescribed intervals. This theorem is applied to the study of flows in locally finite directed graphs. In particular, generalizations of the max-flow min-cut theorem and of the circulation theorem are obtained.</p><p>The axiom of choice is assumed throughout.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"8 1","pages":"Pages 30-44"},"PeriodicalIF":0.0000,"publicationDate":"1970-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80006-0","citationCount":"27","resultStr":"{\"title\":\"Flows in infinite graphs\",\"authors\":\"Jon Folkman,&nbsp;D.R. Fulkerson\",\"doi\":\"10.1016/S0021-9800(70)80006-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A theorem is established that provides necessary and sufficient conditions in order that a locally finite bipartite graph have a subgraph whose valences lie in prescribed intervals. This theorem is applied to the study of flows in locally finite directed graphs. In particular, generalizations of the max-flow min-cut theorem and of the circulation theorem are obtained.</p><p>The axiom of choice is assumed throughout.</p></div>\",\"PeriodicalId\":100765,\"journal\":{\"name\":\"Journal of Combinatorial Theory\",\"volume\":\"8 1\",\"pages\":\"Pages 30-44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1970-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80006-0\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021980070800060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

给出了局部有限二部图有一子图的值在规定区间内的充要条件。该定理应用于局部有限有向图中流动的研究。特别地,得到了最大流量最小割定理和循环定理的推广。选择的公理贯穿始终。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flows in infinite graphs

A theorem is established that provides necessary and sufficient conditions in order that a locally finite bipartite graph have a subgraph whose valences lie in prescribed intervals. This theorem is applied to the study of flows in locally finite directed graphs. In particular, generalizations of the max-flow min-cut theorem and of the circulation theorem are obtained.

The axiom of choice is assumed throughout.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信