{"title":"贝伐单抗对胶质母细胞瘤免疫调节的影响及预测因素的研究","authors":"Toshihide Tanaka","doi":"10.21820/23987073.2023.2.53","DOIUrl":null,"url":null,"abstract":"Glioblastoma (GB) is one of the most common and malignant tumours that originates in the brain. It has a high likelihood of recurrence and a poor survival rate. Professor Toshihide Tanaka, Chief Medical Officer, Jikei University School of Medicine, conducts translational research based\n on clinical samples of glioblastoma tumours obtained from brain tumour surgery procedures as well as animal studies. He heads up a multidisciplinary team focused on the design and selection of personalised treatments for hypervascular malignant gliomas. In their current project, the researchers\n are investigating the use of Bevacizumab (Bev), a monoclonal antibody that targets vascular endothelial growth factor (VEGF). VEGF enhances tumour growth by changing the surrounding environment to one more favourable for tumour growth. The effect of Bev on cancers is transient and the mechanisms\n of resistance to Bev are yet to be investigated in detail. The researchers are therefore seeking to discover predictive biomarkers of microenvironment-targeted therapy for GB. In order to investigate the effect and prediction factors of Bev on immunoregulation in GB, Tanaka and the team perform\n in situ observations using histological techniques including immunohistochemistry using tumour tissues from patients who have undergone surgical resection. The researchers have been able to demonstrate a decrease in microvascular density and an improvement in the tumour microenvironment after\n treatment with Bev.","PeriodicalId":88895,"journal":{"name":"IMPACT magazine","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the effect and prediction factors of bevacizumab on immunoregulation in glioblastoma\",\"authors\":\"Toshihide Tanaka\",\"doi\":\"10.21820/23987073.2023.2.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glioblastoma (GB) is one of the most common and malignant tumours that originates in the brain. It has a high likelihood of recurrence and a poor survival rate. Professor Toshihide Tanaka, Chief Medical Officer, Jikei University School of Medicine, conducts translational research based\\n on clinical samples of glioblastoma tumours obtained from brain tumour surgery procedures as well as animal studies. He heads up a multidisciplinary team focused on the design and selection of personalised treatments for hypervascular malignant gliomas. In their current project, the researchers\\n are investigating the use of Bevacizumab (Bev), a monoclonal antibody that targets vascular endothelial growth factor (VEGF). VEGF enhances tumour growth by changing the surrounding environment to one more favourable for tumour growth. The effect of Bev on cancers is transient and the mechanisms\\n of resistance to Bev are yet to be investigated in detail. The researchers are therefore seeking to discover predictive biomarkers of microenvironment-targeted therapy for GB. In order to investigate the effect and prediction factors of Bev on immunoregulation in GB, Tanaka and the team perform\\n in situ observations using histological techniques including immunohistochemistry using tumour tissues from patients who have undergone surgical resection. The researchers have been able to demonstrate a decrease in microvascular density and an improvement in the tumour microenvironment after\\n treatment with Bev.\",\"PeriodicalId\":88895,\"journal\":{\"name\":\"IMPACT magazine\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMPACT magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21820/23987073.2023.2.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMPACT magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21820/23987073.2023.2.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of the effect and prediction factors of bevacizumab on immunoregulation in glioblastoma
Glioblastoma (GB) is one of the most common and malignant tumours that originates in the brain. It has a high likelihood of recurrence and a poor survival rate. Professor Toshihide Tanaka, Chief Medical Officer, Jikei University School of Medicine, conducts translational research based
on clinical samples of glioblastoma tumours obtained from brain tumour surgery procedures as well as animal studies. He heads up a multidisciplinary team focused on the design and selection of personalised treatments for hypervascular malignant gliomas. In their current project, the researchers
are investigating the use of Bevacizumab (Bev), a monoclonal antibody that targets vascular endothelial growth factor (VEGF). VEGF enhances tumour growth by changing the surrounding environment to one more favourable for tumour growth. The effect of Bev on cancers is transient and the mechanisms
of resistance to Bev are yet to be investigated in detail. The researchers are therefore seeking to discover predictive biomarkers of microenvironment-targeted therapy for GB. In order to investigate the effect and prediction factors of Bev on immunoregulation in GB, Tanaka and the team perform
in situ observations using histological techniques including immunohistochemistry using tumour tissues from patients who have undergone surgical resection. The researchers have been able to demonstrate a decrease in microvascular density and an improvement in the tumour microenvironment after
treatment with Bev.