{"title":"自体荧光支气管镜对可疑病变的恶性分类","authors":"Tomaž Finkšt, J. Tasic, M. Terčelj, M. Meza","doi":"10.5545/SV-JME.2016.4019","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to the classification of bronchial tissue as either malignant or precancerous based on autofluorescence bronchoscopy (AFB) images. The study consisted of 44 images, of which 22 were confirmed as malignant and 22 as nonmalignant precancerous cases. Our approach starts with the detection of a region of interest (ROI). This is followed by an analysis of semi-normal intensity distributions in gray-scale images of red and green components of the previously identified ROI. Based on the results of this analysis, features are computed, which are then used to build an image-classification model. This model classifies the tissue images into malignant/nonmalignant classes. We utilized several classification algorithms, i.e., naive Bayes, K-nearest-neighbor (K-NN), and support vector machine (SVM) with dot kernel. The criteria used when testing their performance were accuracy, sensitivity, specificity, and the area under the curve. Wilcoxon’s signed-rank test was used to confirm the accuracy of the classification method. The proposed method was compared to a similar approach reported by Buountris et al., who analyzed the texture features in a gray-level co-occurrence matrix (GLCM). Using the bestperforming classification algorithm (SVM with dot kernel), the accuracy of the proposed approach (95.8 %) was better than that reported by Bountris et al. (92.1 %).","PeriodicalId":49472,"journal":{"name":"Strojniski Vestnik-Journal of Mechanical Engineering","volume":"474 1","pages":"685-695"},"PeriodicalIF":1.2000,"publicationDate":"2017-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Classification of Malignancy in Suspicious Lesions Using Autofluorescence Bronchoscopy\",\"authors\":\"Tomaž Finkšt, J. Tasic, M. Terčelj, M. Meza\",\"doi\":\"10.5545/SV-JME.2016.4019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach to the classification of bronchial tissue as either malignant or precancerous based on autofluorescence bronchoscopy (AFB) images. The study consisted of 44 images, of which 22 were confirmed as malignant and 22 as nonmalignant precancerous cases. Our approach starts with the detection of a region of interest (ROI). This is followed by an analysis of semi-normal intensity distributions in gray-scale images of red and green components of the previously identified ROI. Based on the results of this analysis, features are computed, which are then used to build an image-classification model. This model classifies the tissue images into malignant/nonmalignant classes. We utilized several classification algorithms, i.e., naive Bayes, K-nearest-neighbor (K-NN), and support vector machine (SVM) with dot kernel. The criteria used when testing their performance were accuracy, sensitivity, specificity, and the area under the curve. Wilcoxon’s signed-rank test was used to confirm the accuracy of the classification method. The proposed method was compared to a similar approach reported by Buountris et al., who analyzed the texture features in a gray-level co-occurrence matrix (GLCM). Using the bestperforming classification algorithm (SVM with dot kernel), the accuracy of the proposed approach (95.8 %) was better than that reported by Bountris et al. (92.1 %).\",\"PeriodicalId\":49472,\"journal\":{\"name\":\"Strojniski Vestnik-Journal of Mechanical Engineering\",\"volume\":\"474 1\",\"pages\":\"685-695\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strojniski Vestnik-Journal of Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5545/SV-JME.2016.4019\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojniski Vestnik-Journal of Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5545/SV-JME.2016.4019","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Classification of Malignancy in Suspicious Lesions Using Autofluorescence Bronchoscopy
This paper presents a novel approach to the classification of bronchial tissue as either malignant or precancerous based on autofluorescence bronchoscopy (AFB) images. The study consisted of 44 images, of which 22 were confirmed as malignant and 22 as nonmalignant precancerous cases. Our approach starts with the detection of a region of interest (ROI). This is followed by an analysis of semi-normal intensity distributions in gray-scale images of red and green components of the previously identified ROI. Based on the results of this analysis, features are computed, which are then used to build an image-classification model. This model classifies the tissue images into malignant/nonmalignant classes. We utilized several classification algorithms, i.e., naive Bayes, K-nearest-neighbor (K-NN), and support vector machine (SVM) with dot kernel. The criteria used when testing their performance were accuracy, sensitivity, specificity, and the area under the curve. Wilcoxon’s signed-rank test was used to confirm the accuracy of the classification method. The proposed method was compared to a similar approach reported by Buountris et al., who analyzed the texture features in a gray-level co-occurrence matrix (GLCM). Using the bestperforming classification algorithm (SVM with dot kernel), the accuracy of the proposed approach (95.8 %) was better than that reported by Bountris et al. (92.1 %).
期刊介绍:
The international journal publishes original and (mini)review articles covering the concepts of materials science, mechanics, kinematics, thermodynamics, energy and environment, mechatronics and robotics, fluid mechanics, tribology, cybernetics, industrial engineering and structural analysis.
The journal follows new trends and progress proven practice in the mechanical engineering and also in the closely related sciences as are electrical, civil and process engineering, medicine, microbiology, ecology, agriculture, transport systems, aviation, and others, thus creating a unique forum for interdisciplinary or multidisciplinary dialogue.