涉及混合Gegenbauer范数的多项式的渐近尖锐不等式

Asymptot. Anal. Pub Date : 2017-07-11 DOI:10.3233/ASY-171425
Holger Langenau
{"title":"涉及混合Gegenbauer范数的多项式的渐近尖锐不等式","authors":"Holger Langenau","doi":"10.3233/ASY-171425","DOIUrl":null,"url":null,"abstract":"The paper concerns best constants in Markov-type inequalities between the norm of a higher derivative of a polynomial and the norm of the polynomial itself. The norm of the polynomial and its derivative is taken in L2 on the real axis with the weight |t|2α e –t2 and |t|2β e –t2, respectively. We determine the leading term of the asymptotics of the constants as the degree of the polynomial goes to infinity.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"67 1","pages":"221-233"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotically sharp inequalities for polynomials involving mixed Gegenbauer norms\",\"authors\":\"Holger Langenau\",\"doi\":\"10.3233/ASY-171425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper concerns best constants in Markov-type inequalities between the norm of a higher derivative of a polynomial and the norm of the polynomial itself. The norm of the polynomial and its derivative is taken in L2 on the real axis with the weight |t|2α e –t2 and |t|2β e –t2, respectively. We determine the leading term of the asymptotics of the constants as the degree of the polynomial goes to infinity.\",\"PeriodicalId\":8603,\"journal\":{\"name\":\"Asymptot. Anal.\",\"volume\":\"67 1\",\"pages\":\"221-233\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptot. Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ASY-171425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-171425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究多项式的高阶导数的范数与多项式本身的范数之间的马尔可夫型不等式中的最佳常数。多项式的范数及其导数在实轴的L2上分别取权值为|t|2α e -t2和|t|2β e -t2。当多项式的次数趋于无穷时,我们确定了常数渐近的前项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotically sharp inequalities for polynomials involving mixed Gegenbauer norms
The paper concerns best constants in Markov-type inequalities between the norm of a higher derivative of a polynomial and the norm of the polynomial itself. The norm of the polynomial and its derivative is taken in L2 on the real axis with the weight |t|2α e –t2 and |t|2β e –t2, respectively. We determine the leading term of the asymptotics of the constants as the degree of the polynomial goes to infinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信